Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
Aiming at the shallow depth seam proximity beneath a room mining goaf, due to that the shallow depth seam is exploited using the longwall mining and overlain by thin bedrock and thick loose sands, many accidents are l...Aiming at the shallow depth seam proximity beneath a room mining goaf, due to that the shallow depth seam is exploited using the longwall mining and overlain by thin bedrock and thick loose sands, many accidents are likely to occur, including roof structure instability, roof step subsidence, damages of shield supports, and the face bumps triggered by the large area roof weighting, resulting in serious threats to the safety of underground miners and equipment. This paper analyses the overlying strata movement rules for the shallow seams using the physical simulation, the 3DEC numerical simulation and the field mea- surements. The results show that, in shallow seam mining, the overburden movement forms caved zone and fractured zone, the cracks develop continuously and reach the surface with the face advancing, and the development of surface cracks generally goes through four stages. With the application of loose blast- ing of residual pillars, reasonable mining height, and roof support and management, the safe, efficient and high recovery rate mining has been achieved in the shallow depth seam proximity beneath a room min ing goal.展开更多
Multiple surface cracks and interfacial delamination are the major failure mechanisms in film/substrate systems.The effect of interlayer upon the failure mechanisms of interfacial delamination concomitant to surface c...Multiple surface cracks and interfacial delamination are the major failure mechanisms in film/substrate systems.The effect of interlayer upon the failure mechanisms of interfacial delamination concomitant to surface crack was explored.Finite element model was developed to obtain the stress and energy release rate(ERR),which governs the propagation of interface cracks.The dependences of delamination upon the geometry and constitutive properties of interlayer were examined.The results indicate that the effect of elastic modulus of interlayer on the steady state ERR is insignificant.In cases of different geometrical parameters,however,the steady ERR decreases with the increase of the interlayer thickness.These findings lead to the conclusion that the interlayer constraint has significant effect on the ERR and thus coating life,which can be adopted to modify the ceramic top coat.展开更多
A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjun...A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the in- fluences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.展开更多
The failure mode and adhesion of thermal barrier coating (TBC) 8YSZ (ZrO2+8% (w/w) Y2O3) deposited on NiCoCrAlTaY bond coat by atmospheric plasma spraying were investigated. A grooved modified three-point bending spec...The failure mode and adhesion of thermal barrier coating (TBC) 8YSZ (ZrO2+8% (w/w) Y2O3) deposited on NiCoCrAlTaY bond coat by atmospheric plasma spraying were investigated. A grooved modified three-point bending specimen that can generate a single interface crack to facilitate the control of crack growth was adopted for testing, which was conducted at the ambient temperature of 100 °C. The morphology and composition of fractured surfaces were examined by means of a scanning electron microscopy (SEM) and an energy disperse spectroscopy (EDS). Images and spectrum show that cracks are initiated and propagated exclusively within YSZ layer adjacent to top/bond coat interface. The load-displacement curves obtained exhibit similar shapes that indicate two distinct stages in crack initiation and stable crack growth. Finite element analyses were performed to extract the adhesion strength of the TBCs. The delamination toughness of the plasma-sprayed 8YSZ coatings at 100 °C, in terms of critical strain energy release rate Gc, can be reliably obtained from an analytical solution.展开更多
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
基金provided by the National Natural Science Foundation of China (No. 51304202)the Natural Science Foundation of Jiangsu Province of China (No. BK20130190)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2013QNA28)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)
文摘Aiming at the shallow depth seam proximity beneath a room mining goaf, due to that the shallow depth seam is exploited using the longwall mining and overlain by thin bedrock and thick loose sands, many accidents are likely to occur, including roof structure instability, roof step subsidence, damages of shield supports, and the face bumps triggered by the large area roof weighting, resulting in serious threats to the safety of underground miners and equipment. This paper analyses the overlying strata movement rules for the shallow seams using the physical simulation, the 3DEC numerical simulation and the field mea- surements. The results show that, in shallow seam mining, the overburden movement forms caved zone and fractured zone, the cracks develop continuously and reach the surface with the face advancing, and the development of surface cracks generally goes through four stages. With the application of loose blast- ing of residual pillars, reasonable mining height, and roof support and management, the safe, efficient and high recovery rate mining has been achieved in the shallow depth seam proximity beneath a room min ing goal.
基金Project(2013CB035700) supported by the National Basic Research Program of ChinaProjects(11272259,11321062,11002104) supported by the National Natural Science Foundation of China
文摘Multiple surface cracks and interfacial delamination are the major failure mechanisms in film/substrate systems.The effect of interlayer upon the failure mechanisms of interfacial delamination concomitant to surface crack was explored.Finite element model was developed to obtain the stress and energy release rate(ERR),which governs the propagation of interface cracks.The dependences of delamination upon the geometry and constitutive properties of interlayer were examined.The results indicate that the effect of elastic modulus of interlayer on the steady state ERR is insignificant.In cases of different geometrical parameters,however,the steady ERR decreases with the increase of the interlayer thickness.These findings lead to the conclusion that the interlayer constraint has significant effect on the ERR and thus coating life,which can be adopted to modify the ceramic top coat.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10672027 and 90816025)the National Basic Research Program of China (Grant No. 2006CB601205)
文摘A sandwich beam model consisting of two face sheets and a foam core bonded by a viscoelastic adhesive layer is considered in order to investigate interfacial fracture behavior. Firstly, a cohesive zone model in conjunction with a Maxwell element in parallel, or with a Kelvin element in series, respectively, is employed to describe the characteristics of viscoelasticity for the adhesive layer. The models can be implemented into the implicit finite element code. Next, the parametric study shows that the in- fluences of loading rates on the cohesive zone energy and strength are quite different for different models. Finally, a sandwich double cantilever beam model is adopted to simulate the interface crack growth between the face sheet and core. Numerical examples are presented for various loading rates to demonstrate the efficacy of the rate-dependent cohesive models.
基金Project (No 2007CB707702) supported by the National Basic Research Program (973) of China
文摘The failure mode and adhesion of thermal barrier coating (TBC) 8YSZ (ZrO2+8% (w/w) Y2O3) deposited on NiCoCrAlTaY bond coat by atmospheric plasma spraying were investigated. A grooved modified three-point bending specimen that can generate a single interface crack to facilitate the control of crack growth was adopted for testing, which was conducted at the ambient temperature of 100 °C. The morphology and composition of fractured surfaces were examined by means of a scanning electron microscopy (SEM) and an energy disperse spectroscopy (EDS). Images and spectrum show that cracks are initiated and propagated exclusively within YSZ layer adjacent to top/bond coat interface. The load-displacement curves obtained exhibit similar shapes that indicate two distinct stages in crack initiation and stable crack growth. Finite element analyses were performed to extract the adhesion strength of the TBCs. The delamination toughness of the plasma-sprayed 8YSZ coatings at 100 °C, in terms of critical strain energy release rate Gc, can be reliably obtained from an analytical solution.