Mg-Li matrix composites are one of the ideal structural materials in the fields of aerospace and military due to their high specific strength and stiffness, good damping and wear resistance, and small thermal expansio...Mg-Li matrix composites are one of the ideal structural materials in the fields of aerospace and military due to their high specific strength and stiffness, good damping and wear resistance, and small thermal expansion coefficient. The preparation technologies of Mg-Li matrix composites including powder metallurgy, pressure infiltration, stir-casting, foil metallurgy, and in-situ synthesis were introduced, and their advantages and disadvantages were compared. The common matrix alloys and reinforcements for Mg-Li matrix composites as well as the structure and performance of typical composites were mainly summarized. Then the interface chemistry between matrix and reinforcement was briefly reviewed. Finally, some problems existing at present and the possible solutions were discussed.展开更多
A polystyrene-based ion-exchange resin was employed as the precursor for preparation of resin-derived carbon spheres (RCSs) through KOH activation with various impregnation ratios. Pore structure, yield and hardness...A polystyrene-based ion-exchange resin was employed as the precursor for preparation of resin-derived carbon spheres (RCSs) through KOH activation with various impregnation ratios. Pore structure, yield and hardness, surface functional groups of the samples and their adsorption performance towards dibenzothiophene (DBT) were investigated. The RCSs with large surface areas (up to 2696 m2/g) and total pore volumes (up to 1.46 cm3/g) exhibited larger adsorption capacities than a commercial ac- tivated carbon, F400. Polanyi-Dubinin-Mane (PDM) model was applied to fit the adsorption data, which proved that micropore filling was involved during the adsorption process. Moreover, a good linear relationship was observed between the ex- tra-micropore volume and adsorption capacity. Intra-particle diffusion (IPD) model was used to describe the kinetic data of DBT onto the adsorbents. The adsorption processes were divided into three stages according to the different diffusion parame- ter. The selective adsorption towards DBT in the presence of competing compounds was also investigated and the high selec- tivity of the RSCs towards DBT may be attributed to the large quantity of acidic oxygen-containing groups.展开更多
The hierarchical micro/nanoscale layered formation of organic and inorganic components of natural nacre, results in abundant interracial interactions, providing an inspiration for fabricating bioinspired nanocomposite...The hierarchical micro/nanoscale layered formation of organic and inorganic components of natural nacre, results in abundant interracial interactions, providing an inspiration for fabricating bioinspired nanocomposites through constructing the interfacial interactions. Herein, we demonstrated the synergistic interfacial interactions of hydrogen bonding from hydroxypropyl cellu- lose and ionic bonding from copper ions upon the reduced graphene oxide based bioinspired nanocomposites, which show the integrated tensile strength, toughness and excellent fatigue-resistant property, as well as high electrical conductivity. These ex- traordinary properties allow this kind of bioinspired nanocomposites to potentially utilize in the fields of aerospace, flexible electronics devices, etc. This study also opens a door for fabricating excellent mechanical performance graphene-based bioin- spired nanocomposites via synergistic interfacial interactions in the future.展开更多
A novel morphology-controlled strategy has been developed to fabricate sulfonated graphene/polyaniline (SGEP) nanocomposites by liquid/liquid interracial polymerization. Sulfonated graphene (SGE) sheets were synth...A novel morphology-controlled strategy has been developed to fabricate sulfonated graphene/polyaniline (SGEP) nanocomposites by liquid/liquid interracial polymerization. Sulfonated graphene (SGE) sheets were synthesized and used as both a macromolecular acid dopant and substrate for the polymerization of polyaniline (PANI), affording the SGEP nanocomposites. The morphology of PAN! in the nanocomposites can be controlled to be either nanorods or nanogranules by varying the synthesis conditions. The morphology of SGEP and the shape of PANI can be tuned by adding an additional dopant and varying the amount of SGE used, and this had a significant influence on the electrochemical performance of the nanocomposites as supercapacitor electrode materials. The SGEP nanocomposite with PANI nanorods exhibited a specific capacitance of 763 F/g with a capacity retention of 96% after 100 cycles and good rate properties. Composites obtained with HCI as an additional acid dopant with two different ratios of SGE to PANI showed higher specific capacitances of 793 and 931 F/g, but lower capacity retention after 100 cycles of 77% and 76%, respectively.展开更多
基金Project(2017zzts005)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(CSUZC201814)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Mg-Li matrix composites are one of the ideal structural materials in the fields of aerospace and military due to their high specific strength and stiffness, good damping and wear resistance, and small thermal expansion coefficient. The preparation technologies of Mg-Li matrix composites including powder metallurgy, pressure infiltration, stir-casting, foil metallurgy, and in-situ synthesis were introduced, and their advantages and disadvantages were compared. The common matrix alloys and reinforcements for Mg-Li matrix composites as well as the structure and performance of typical composites were mainly summarized. Then the interface chemistry between matrix and reinforcement was briefly reviewed. Finally, some problems existing at present and the possible solutions were discussed.
文摘A polystyrene-based ion-exchange resin was employed as the precursor for preparation of resin-derived carbon spheres (RCSs) through KOH activation with various impregnation ratios. Pore structure, yield and hardness, surface functional groups of the samples and their adsorption performance towards dibenzothiophene (DBT) were investigated. The RCSs with large surface areas (up to 2696 m2/g) and total pore volumes (up to 1.46 cm3/g) exhibited larger adsorption capacities than a commercial ac- tivated carbon, F400. Polanyi-Dubinin-Mane (PDM) model was applied to fit the adsorption data, which proved that micropore filling was involved during the adsorption process. Moreover, a good linear relationship was observed between the ex- tra-micropore volume and adsorption capacity. Intra-particle diffusion (IPD) model was used to describe the kinetic data of DBT onto the adsorbents. The adsorption processes were divided into three stages according to the different diffusion parame- ter. The selective adsorption towards DBT in the presence of competing compounds was also investigated and the high selec- tivity of the RSCs towards DBT may be attributed to the large quantity of acidic oxygen-containing groups.
基金supported by the Excellent Young Scientist Foundation of NSFC(Grant No.51522301)the National Natural Science Foundation of China(Grant Nos.21273017&51103004)+7 种基金Program for New Century Excellent Talents in University(Grant No.NCET-12-0034)Beijing Nova Program(Grant No.Z121103002512020)Fok Ying-Tong Education Foundation(Grant No.141045)Open Project of Beijing National Laboratory for Molecular Sciences,the 111 Project(Grant No.B14009)Aeronautical Science Foundation of China(Grant Nos.20145251035&2015ZF21009)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(Grant No.LK1508)the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-M03)the Fundamental Research Funds for the Central Universities(Grant Nos.YWF-15-HHXY-001&YWF-16-BJ-J-09)
文摘The hierarchical micro/nanoscale layered formation of organic and inorganic components of natural nacre, results in abundant interracial interactions, providing an inspiration for fabricating bioinspired nanocomposites through constructing the interfacial interactions. Herein, we demonstrated the synergistic interfacial interactions of hydrogen bonding from hydroxypropyl cellu- lose and ionic bonding from copper ions upon the reduced graphene oxide based bioinspired nanocomposites, which show the integrated tensile strength, toughness and excellent fatigue-resistant property, as well as high electrical conductivity. These ex- traordinary properties allow this kind of bioinspired nanocomposites to potentially utilize in the fields of aerospace, flexible electronics devices, etc. This study also opens a door for fabricating excellent mechanical performance graphene-based bioin- spired nanocomposites via synergistic interfacial interactions in the future.
文摘A novel morphology-controlled strategy has been developed to fabricate sulfonated graphene/polyaniline (SGEP) nanocomposites by liquid/liquid interracial polymerization. Sulfonated graphene (SGE) sheets were synthesized and used as both a macromolecular acid dopant and substrate for the polymerization of polyaniline (PANI), affording the SGEP nanocomposites. The morphology of PAN! in the nanocomposites can be controlled to be either nanorods or nanogranules by varying the synthesis conditions. The morphology of SGEP and the shape of PANI can be tuned by adding an additional dopant and varying the amount of SGE used, and this had a significant influence on the electrochemical performance of the nanocomposites as supercapacitor electrode materials. The SGEP nanocomposite with PANI nanorods exhibited a specific capacitance of 763 F/g with a capacity retention of 96% after 100 cycles and good rate properties. Composites obtained with HCI as an additional acid dopant with two different ratios of SGE to PANI showed higher specific capacitances of 793 and 931 F/g, but lower capacity retention after 100 cycles of 77% and 76%, respectively.