期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面条加工废弃物在肉鸡上的饲喂价值
1
作者 刘晶晶 由文颖 石桂珍 《中国饲料》 北大核心 2021年第8期101-104,共4页
文章旨在探讨日粮添加不同水平的面条渣对肉鸡生长性能、养分消化率、肠道绒毛形态及胴体性状的影响。试验选择600只平均体重为(40.25±0.76)g的肉仔鸡,随机分为4组,每组5个重复,每个重复30只,分别饲喂含有0、5%、10%和15%面条渣日... 文章旨在探讨日粮添加不同水平的面条渣对肉鸡生长性能、养分消化率、肠道绒毛形态及胴体性状的影响。试验选择600只平均体重为(40.25±0.76)g的肉仔鸡,随机分为4组,每组5个重复,每个重复30只,分别饲喂含有0、5%、10%和15%面条渣日粮,试验共进行42 d。结果:在试验初期(1~18 d)与对照组相比,面条渣组肉鸡的料重比较差(P<0.05),且随着面条渣水平的增加,料重比呈显著负线性反应(P<0.05)。随着日粮面渣添加水平的升高,屠体重、净膛重表现为显著线性升高(P<0.05),而胴体重和胸肌重占比表现为显著的二次曲线降低(P<0.05),其中0和10%面条渣组胴体占比显著高于5%和15%组。与对照组相比,面条渣组空肠绒毛高度、绒毛宽度及隐窝深度显著提高(P<0.05),同时回肠绒毛高度和隐窝深度随日粮面渣添加水平的升高表现为显著线性升高(P<0.05),但干物质和粗纤维消化率表现为显著线性降低(P<0.05)。结论:在本试验条件下,日粮适宜的面条渣添加水平为5%。 展开更多
关键词 面条渣 肉鸡 生长性能 养分消化 绒毛形态
下载PDF
Leaching of vanadium and chromium from converter vanadium slag intensified with surface wettability 被引量:9
2
作者 YANG Qi-wen XIE Zhao-ming +2 位作者 PENG Hao LIU Zuo-hua TAO Chang-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1317-1325,共9页
Technology intensified with surface wettability was introduced to leach vanadium and chromium from converter vanadium slag without roasting. Parameters affecting the leaching efficiency of vanadium and chromium were i... Technology intensified with surface wettability was introduced to leach vanadium and chromium from converter vanadium slag without roasting. Parameters affecting the leaching efficiency of vanadium and chromium were investigated: sulfuric acid concentration, MnOz-to-slag mass ratio, liquid-to-solid ratio, leaching time, leaching temperature, and sodium dodecyl sulfate (SDS)-to-slag mass ratio. The leaching efficiencies of vanadium and chromium were 33.46 % and 20.02 % higher in the presence of MnO2 and SDS, respectively, compared to the control. The leaching efficiencies of vanadium and chromium were 68.93 % and 30.74 %, respectively, under the optimum conditions: sulfuric acid concentration 40 wt%, MnOz-to-slag mass ratio 10.0 wt%, liquid-to-solid ratio 5:1 mL/g; 12 h; 90 ~C; and SDS-to-slag mass ratio 0.25 wt%. The analysis of the reaction mechanism in the leaching process indicates that MnO2 combined with protons (H+) could oxidize low-valent vanadium and chromium; SDS could change the chemical behavior and decrease the surface tension of the aqueous solution to favor MnO2 oxidization. 展开更多
关键词 VANADIUM CHROMIUM LEACHING SURFACTANT Mn02
下载PDF
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
3
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部