The transient plane source(TPS)method is developed recently to measure the thermal conductivity of materials.In the measurement,the heating power is influenced by the heat which is transferred via the probe electrical...The transient plane source(TPS)method is developed recently to measure the thermal conductivity of materials.In the measurement,the heating power is influenced by the heat which is transferred via the probe electrical leads.This fact further influences the measurement accuracy of thermal conductivity.To solve this problem,the influence of heat loss through the electrical leads on the heating power is studied theoretically.The mathematical formula of heat loss is deduced,and the corresponding correction model is presented.A series of measurement experiments on different materials have been conducted by using the hot disk thermal constant analyzer.The results show that the influence of the heat loss on the measurement is sensitive to different test materials and probes with different sizes.When the thermal conductivity of the material is greater than 0.2 W/(m·K),the influence of the heat loss is less than 0.16%,which can be ignored.As to the lower thermal conductivity materials,it is necessary to compensate the heat loss through the electrical leads,and the accuracy of thermal conductivity measurement can be effectively improved.展开更多
This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to cont...This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.展开更多
文摘The transient plane source(TPS)method is developed recently to measure the thermal conductivity of materials.In the measurement,the heating power is influenced by the heat which is transferred via the probe electrical leads.This fact further influences the measurement accuracy of thermal conductivity.To solve this problem,the influence of heat loss through the electrical leads on the heating power is studied theoretically.The mathematical formula of heat loss is deduced,and the corresponding correction model is presented.A series of measurement experiments on different materials have been conducted by using the hot disk thermal constant analyzer.The results show that the influence of the heat loss on the measurement is sensitive to different test materials and probes with different sizes.When the thermal conductivity of the material is greater than 0.2 W/(m·K),the influence of the heat loss is less than 0.16%,which can be ignored.As to the lower thermal conductivity materials,it is necessary to compensate the heat loss through the electrical leads,and the accuracy of thermal conductivity measurement can be effectively improved.
基金Project(NRF-2010-0024155) supported by the National Research Foundation of Korea
文摘This research was conducted to study the performances of the heat and multilayer reflection insulators used for buildings in South Korea to realize eco-friendly, low-energy-consumption, green construction, and to contribute to energy consumption reduction in buildings and to the nation's greenhouse gas emission reduction policy (targeting 30% reduction compared to BAUCousiness as usual) by 2020). The heat insulation performance test is about the temperatures on surfaces of test piece. The high air temperature and the low air temperature were measured to determine the overall heat transfer coefficient and thermal conductivity. The conclusions are drawn that the heat transmission coefficients for each type of existing reflection insulator are: A-1 (0.045 W/(m-K)), A-2 (0.031 W/(m.K)), A-3 (0.042 W/(m.K)), A-4 (0.078 W/(m.K)), and the average heat conductivity is 0.049 W/(m-K); The heat conductivity for each type of Styrofoam insulator are 0.030 W/(m.K) for B-l, 0.032 W/(m-K) for B-2, 0.037 W/(m'K) for B-3, 0.037 W/(m.K) for B-4, and the average heat conductivity is 0.035 W/(m'K) regardless of the thickness of the insulator; The heat conductivity values of the multilayer reflection insulators are converted based on the thickness and type C-1 (0.020 W/(m.K)), C-2 (0.018 W/(m.K)), C-3 (0.016 W/(m.K)), and C-4 (0.012 W/(m.K)); The multilayer reflection insulator keeps the indoor-side surface temperature high (during winter) or low (in summer), enhances the comfort of the building occupants, and conducts heating and moisture resistance to prevent dew condensation on the glass-outer-wall surface.