Chemical prelithiation is regarded as a crucial method for improving the initial Coulombic efficiency(ICE)of Li-storage anodes.Herein,a substituent-engineered Li-cyanonaphthalene chemical prelithiation system is desig...Chemical prelithiation is regarded as a crucial method for improving the initial Coulombic efficiency(ICE)of Li-storage anodes.Herein,a substituent-engineered Li-cyanonaphthalene chemical prelithiation system is designed to simultaneously enhance the ICE and construct a multifunctional interfacial film for SiO electrodes.X-ray photoelectron spectroscopy(XPS),electron energy-loss spectroscopy(EELS),nuclear magnetic resonance(NMR)spectroscopy and atomic force microscopy(AFM)prove that the Licyanonaphthalene prelithiation reagent facilitates the formation of a rectified solid electrolyte interface(SEI)film in two ways:(1)generation of a gradient SEI film with an organic outer layer(dense Ncontaining organics,ROCO_(2)Li)and an inorganic LiF-enriched inner layer;(2)homogenization of the horizontal distribution of the composition,mechanical properties and surface potential.As a result,the prelithiated SiO electrode exhibits an ICE above 100%,enhanced CEs during cycling,better cycle stability and inhibition of lithium dendrite formation in the overcharged state.Notably,the prelithiated hard carbon/SiO(9:1)‖LHCoO_(2) cell displays an enhancement in the energy density of 62.3%.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0206703)the National Natural Science Foundation of China(21701163,21671181,21831006,22075268)Ningbo Veken Battery Co.,Ltd.(2018B10043)。
文摘Chemical prelithiation is regarded as a crucial method for improving the initial Coulombic efficiency(ICE)of Li-storage anodes.Herein,a substituent-engineered Li-cyanonaphthalene chemical prelithiation system is designed to simultaneously enhance the ICE and construct a multifunctional interfacial film for SiO electrodes.X-ray photoelectron spectroscopy(XPS),electron energy-loss spectroscopy(EELS),nuclear magnetic resonance(NMR)spectroscopy and atomic force microscopy(AFM)prove that the Licyanonaphthalene prelithiation reagent facilitates the formation of a rectified solid electrolyte interface(SEI)film in two ways:(1)generation of a gradient SEI film with an organic outer layer(dense Ncontaining organics,ROCO_(2)Li)and an inorganic LiF-enriched inner layer;(2)homogenization of the horizontal distribution of the composition,mechanical properties and surface potential.As a result,the prelithiated SiO electrode exhibits an ICE above 100%,enhanced CEs during cycling,better cycle stability and inhibition of lithium dendrite formation in the overcharged state.Notably,the prelithiated hard carbon/SiO(9:1)‖LHCoO_(2) cell displays an enhancement in the energy density of 62.3%.