设f(z)是在点集D上定义,n(f=w,D)表示方程f(z)=w在D内根的个数.如果f(z)=w在Δ={│Z│<1}内是解析的,令I_λ(r,f)=1/2π integral from n=0 to 2π│f(re^(iθ))(?)~λdθ,0<r<1,λ>0,这就是Hardy-Stein-Spencer恒等式.当...设f(z)是在点集D上定义,n(f=w,D)表示方程f(z)=w在D内根的个数.如果f(z)=w在Δ={│Z│<1}内是解析的,令I_λ(r,f)=1/2π integral from n=0 to 2π│f(re^(iθ))(?)~λdθ,0<r<1,λ>0,这就是Hardy-Stein-Spencer恒等式.当我们研究BMOA和面积平均p叶函数时,希望Hardy-Stein-Spencer恒等式对亚纯函数也成立.本文将解决这个问题.引理 1 设(?)D是分段光滑Jordan曲线,其内部区域为D,设z_0∈D.假设f(z)在(?)\{z_0}内解析且没有零点,又设z_0是f(z)的ι阶极点,对λ>0,有证令 容易知道设Ω表示(?)\h((?)D)的无界分支,由于z_0是g(z)的简单极点,因此n(h=ω,D)=1, ω∈Ω.如右图:展开更多
文摘设f(z)是在点集D上定义,n(f=w,D)表示方程f(z)=w在D内根的个数.如果f(z)=w在Δ={│Z│<1}内是解析的,令I_λ(r,f)=1/2π integral from n=0 to 2π│f(re^(iθ))(?)~λdθ,0<r<1,λ>0,这就是Hardy-Stein-Spencer恒等式.当我们研究BMOA和面积平均p叶函数时,希望Hardy-Stein-Spencer恒等式对亚纯函数也成立.本文将解决这个问题.引理 1 设(?)D是分段光滑Jordan曲线,其内部区域为D,设z_0∈D.假设f(z)在(?)\{z_0}内解析且没有零点,又设z_0是f(z)的ι阶极点,对λ>0,有证令 容易知道设Ω表示(?)\h((?)D)的无界分支,由于z_0是g(z)的简单极点,因此n(h=ω,D)=1, ω∈Ω.如右图: