The transpiration rate and transpiration quantity'of whole plants and foliages of Bromus innerrnis, Medicago sativa and Agropyron cristatum are measured by using improved quick and continuous weighting after being cu...The transpiration rate and transpiration quantity'of whole plants and foliages of Bromus innerrnis, Medicago sativa and Agropyron cristatum are measured by using improved quick and continuous weighting after being cut off method (QCWC). The results show that transpiration rate of branches and foliages of Agropyron cristatum is highest in 3 forages, Medicago sativa is second and Bromus innermis is lowest. From July to September, the average transpiration quantity of whole plants and foliages of 3 forages is highest in August, September is second and July is lowest.展开更多
The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterize...The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.展开更多
The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffu...The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate o constant koapp, equal to the true rate constant ko describing the redox reaction of interest on the surface of the nanoparticles and the ratio,ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I-1 versus ω-1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof koapp, not ko. Thus, for ψ 〉 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ 〈 1 the deduced electrochemical rate constant will be less than ko. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts.展开更多
Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction were synthesized via a facile template-free hydrothermal method. The TiO2 photo- catalysts were flower-like microspheres with a 3 μm diameter. Th...Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction were synthesized via a facile template-free hydrothermal method. The TiO2 photo- catalysts were flower-like microspheres with a 3 μm diameter. The base structure of the flower-like microspheres was a uniform nanowire with a 10 nm diameter. Anatase films were evenly coated onto the surface of the rutile TiO2 nanowires to form a one-dimensional core--shell base structure. This kind of one-dimensional heterojunction is conducive to the separation of charge carriers. In addition, the hierarchical TiO2 microspheres possessed a good mesoporous structure with a high specific surface area of 260 m2/g. Thus, the light scattering and utilization efficiency were improved in this structure. The photocatalysts exhibited better performance in both photocatalytic oxidation and reduction reactions. Moreover, the novel TiO2 photocatalysts displayed excellent stability in these reactions. This kind of hierarchical TiO2 structure has never been reported in the literature. The hierarchical structure and one-dimensional heterojunction were vital to the increase in quantum efficiency. Therefore, these hierarchical TiO2 photocatalysts have potential applications in the environmental and energy fields, such as in photocatalytic degradation, hydrogen production, Li-ion batteries, and dye-sensitized solar cells.展开更多
Integration of molybdenum disulfide (MoS2) onto high surface area photocathod is highly desired to minimize the overpotential for the solar-powered hydrogen evolution reaction (HER). Semiconductor nanowires (NWs...Integration of molybdenum disulfide (MoS2) onto high surface area photocathod is highly desired to minimize the overpotential for the solar-powered hydrogen evolution reaction (HER). Semiconductor nanowires (NWs) are beneficial use in photoelectrochemistry because of their large electrochemically availab surface area and inherent ability to decouple light absorption and the transpo of minority carriers. Here, silicon (Si) NW arrays were employed as a mod photocathode system for MoS2 wrapping, and their solar-driven HER activil was evaluated. The photocathode is made up of a well-defined MoSJTiO2/Si coaxial NW heterostructure, which yielded photocurrent density up to 15 mA/cm2 (at 0 V vs. the reversible hydrogen electrode (RHE)) with goo stability under the operating conditions employed. This work reveals the earth-abundant electrocatalysts coupled with high surface area NW electrod~ can provide performance comparable to noble metal catalysts for photocathod hydrogen evolution.展开更多
基金Supported by "Eleventh Five-Year "National Scientific and Technological Support Projects(2006BAD25B09-8)"十一五"国家科技支撑计划项目(2006BAD25B09-8)
文摘The transpiration rate and transpiration quantity'of whole plants and foliages of Bromus innerrnis, Medicago sativa and Agropyron cristatum are measured by using improved quick and continuous weighting after being cut off method (QCWC). The results show that transpiration rate of branches and foliages of Agropyron cristatum is highest in 3 forages, Medicago sativa is second and Bromus innermis is lowest. From July to September, the average transpiration quantity of whole plants and foliages of 3 forages is highest in August, September is second and July is lowest.
文摘The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.
文摘The application of naive Koutecky-Levich analysis to micro- and nano-particle modified rotating disk electrodes of partially covered and non-planar geometry is critically analysed. Assuming strong overlap of the diffusion fields of the particles such that transport to the entire surface is time-independent and one-dimensional, the observed voltammetric response reflects an apparent electrochemical rate o constant koapp, equal to the true rate constant ko describing the redox reaction of interest on the surface of the nanoparticles and the ratio,ψ, of the total electroactive surface area to the geometric area of the rotating disk surface. It is demonstrated that Koutecky-Levich analysis is applicable and yields the expected plots of I-1 versus ω-1 where I is the current and ω is the rotation speed but that the values of the electrochemical rate constants inferred are thereof koapp, not ko. Thus, for ψ 〉 1 apparent electrocatalysis might be naively but wrongly inferred whereas for ψ 〈 1 the deduced electrochemical rate constant will be less than ko. Moreover, the effect of ψ on the observed rotating disk electrode voltammograms is significant, signalling the need for care in the overly simplistic application of Koutecky-Levich analysis to modified rotating electrodes, as is commonly applied for example in the analysis of possible oxygen reduction catalysts.
文摘Hierarchical TiO2 photocatalysts with a one-dimensional heterojunction were synthesized via a facile template-free hydrothermal method. The TiO2 photo- catalysts were flower-like microspheres with a 3 μm diameter. The base structure of the flower-like microspheres was a uniform nanowire with a 10 nm diameter. Anatase films were evenly coated onto the surface of the rutile TiO2 nanowires to form a one-dimensional core--shell base structure. This kind of one-dimensional heterojunction is conducive to the separation of charge carriers. In addition, the hierarchical TiO2 microspheres possessed a good mesoporous structure with a high specific surface area of 260 m2/g. Thus, the light scattering and utilization efficiency were improved in this structure. The photocatalysts exhibited better performance in both photocatalytic oxidation and reduction reactions. Moreover, the novel TiO2 photocatalysts displayed excellent stability in these reactions. This kind of hierarchical TiO2 structure has never been reported in the literature. The hierarchical structure and one-dimensional heterojunction were vital to the increase in quantum efficiency. Therefore, these hierarchical TiO2 photocatalysts have potential applications in the environmental and energy fields, such as in photocatalytic degradation, hydrogen production, Li-ion batteries, and dye-sensitized solar cells.
文摘Integration of molybdenum disulfide (MoS2) onto high surface area photocathod is highly desired to minimize the overpotential for the solar-powered hydrogen evolution reaction (HER). Semiconductor nanowires (NWs) are beneficial use in photoelectrochemistry because of their large electrochemically availab surface area and inherent ability to decouple light absorption and the transpo of minority carriers. Here, silicon (Si) NW arrays were employed as a mod photocathode system for MoS2 wrapping, and their solar-driven HER activil was evaluated. The photocathode is made up of a well-defined MoSJTiO2/Si coaxial NW heterostructure, which yielded photocurrent density up to 15 mA/cm2 (at 0 V vs. the reversible hydrogen electrode (RHE)) with goo stability under the operating conditions employed. This work reveals the earth-abundant electrocatalysts coupled with high surface area NW electrod~ can provide performance comparable to noble metal catalysts for photocathod hydrogen evolution.