Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printi...Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printing method is also used to build parts, patterns, and molds that feature fine details for a wide range of applications because texture manufacturing by 3D printing is faster, more flexible, and less expensive than traditional techniques. To date, there has been no research on textured surfaces produced by 3D printing. Therefore, a new fabrication method using 3D printing to improve friction and wear properties is a topic worth exploring. In this study, a reciprocating friction tester was used to evaluate the friction and wear properties of different surface textures produced by 3D printing. The surface of specimens was examined by electron microscope and scanning electron microscope before and after the test. The results show that surface texturing can be applied to 3D printed parts to improve their friction and wear performance.展开更多
基金supported by the Basic Science Research Program of the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology of the Korean government(Grant No.NRF-2015R1D1A1A09060901)Ministry of Trade,Industry and Energy via FY 2015 Korea Institute for the Advancement of technology through Construction Machine R&D Expert Cultivation Program
文摘Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printing method is also used to build parts, patterns, and molds that feature fine details for a wide range of applications because texture manufacturing by 3D printing is faster, more flexible, and less expensive than traditional techniques. To date, there has been no research on textured surfaces produced by 3D printing. Therefore, a new fabrication method using 3D printing to improve friction and wear properties is a topic worth exploring. In this study, a reciprocating friction tester was used to evaluate the friction and wear properties of different surface textures produced by 3D printing. The surface of specimens was examined by electron microscope and scanning electron microscope before and after the test. The results show that surface texturing can be applied to 3D printed parts to improve their friction and wear performance.