The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP gri...The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP grid and the concrete under different types of adhesive and surface treatment were tested. The most efficient anchoring system was adopted for the subsequent scaled tunnel strengthening. Test results show that when the epoxy structural adhesive was used as the bonding material, the failure mode was CFRP grids rupturing,and the anchorage performance was optimal. When the polymer mortar was used as the adhesive, the surface treatments with anchored bolts and grooves can improve the bond performance, and the failure mode was sliding failure with the polymer mortar peeled off. After strengthening with CFRP grids, both the stiffness and the load capacity of the pre-damaged scaled tunnel model were improved. Additionally,the results obtained by fiber bragg grating(FBG) sensors indicate that the strains across tunnel segments were reduced,and the overall performance of the tunnel was improved.展开更多
基金The Science and Technology Project of China Southern Pow er Grid Co.,Ltd.(No.GDKJ00000030)the National Key Technology R&D Program of China(No.2016YFC0701400)the National Natural Science Foundation of China(No.51525801)
文摘The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP grid and the concrete under different types of adhesive and surface treatment were tested. The most efficient anchoring system was adopted for the subsequent scaled tunnel strengthening. Test results show that when the epoxy structural adhesive was used as the bonding material, the failure mode was CFRP grids rupturing,and the anchorage performance was optimal. When the polymer mortar was used as the adhesive, the surface treatments with anchored bolts and grooves can improve the bond performance, and the failure mode was sliding failure with the polymer mortar peeled off. After strengthening with CFRP grids, both the stiffness and the load capacity of the pre-damaged scaled tunnel model were improved. Additionally,the results obtained by fiber bragg grating(FBG) sensors indicate that the strains across tunnel segments were reduced,and the overall performance of the tunnel was improved.