Laser alloying was used for production of thick layers on surface of Nimonic 80A-alloy.For laser surface modification,three types of pre-coated pastes were applied:with amorphous boron,with amorphous boron and molybde...Laser alloying was used for production of thick layers on surface of Nimonic 80A-alloy.For laser surface modification,three types of pre-coated pastes were applied:with amorphous boron,with amorphous boron and molybdenum as well as with amorphous boron and niobium.The microstructure,hardness and wear resistance of produced layers were studied in details.The presence of different types of borides in re-melted zone depended on the paste composition and caused an increase in hardness up to about HV 1000.The wear resistance was evaluated by calculation of mass wear intensity factor Imw and relative mass loss of specimen and counter-specimen.The wear behavior of the tested frictional pairs was determined by 3D interference microscopy,scanning electron microscopy equipped with EDS microanalyzer.The significant increase in abrasive wear resistance was observed in comparison to untreated Nimonic 80A-alloy.The lowest mass loss intensity factor was characteristic of laser-alloyed Nimonic 80A-alloy with boron and niobium(Imw=1.234 mg/(cm2?h)).Laser alloyed-layers indicated abrasive wear mechanism with clearly visible grooves.Laser alloying with boron and niobium resulted in the additional oxidative wear mechanism.In this case,EDS patterns revealed presence of oxygen on the worn surface of specimen.展开更多
Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and art...Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and artificial slopes in thirteen surveying sites located in the Northern Shaanxi, the center of Loess Plateau, covering five characteristic topographic features including tablelands, ridges, hills, gullies and valleys. Based on the scale that is involved in freeze-thaw cycling, the induced failures can be classified into three main modes, i.e., erosion, peeling and thaw collapse, depending on both high porosity and loose cementation of loess that is easily affected. Model tests on loess slopes with gradients of 53.1°, 45.0° and 33.7° were carried out to reveal the heat transfer, water migration and deformation during slope failure. The surface morphology of slopes was photographed, with flake shaped erosion and cracks noted. For three slope models, time histories for the thermal regime exhibit three obvious cycles of freeze and thaw andthe maximum frost depth develops downwards as freeze-thaw cycling proceeds. Soil water in the unfrozen domain beneath was migrated towards the slope surface, as can be noticed from the considerable change in the unfrozen water content, almost synchronous with the variation of temperature. The displacement in both vertical and horizontal directions varies over time and three obvious cycles can be traced. The residual displacement for each cycle tends to grow and the slopes with higher gradients are more sensitive to potentially sliding during freeze-thaw cycling.展开更多
Side loads and aeroelastic stability of rocket nozzle were studied by solving Navier-Stokes equation coupled with structural equation of motion.The computation was implemented at different total pressure inlet conditi...Side loads and aeroelastic stability of rocket nozzle were studied by solving Navier-Stokes equation coupled with structural equation of motion.The computation was implemented at different total pressure inlet conditions,and flow phenomena of free shock separation(FSS) and restricted shock separation(RSS) were captured.At certain total pressure inlet conditions,it was found that both kinds of separations existed in nozzle flow filed,while RSS exhibited combined space asymmetry and time unsteady characteristics.The corresponding asymmetric circumferential pressure distribution,strong pressure fluctuation in separation region and large range of displacement of shock wave all led to severe side loads.Besides,for flexible nozzles,the low pressure gradient in separation region might reduce structure stability at nozzle exit,resulting in large local deformation.It was also found that aeroelasticity exhibited buffeting characteristic due to the asymmetric separation,resulting in reduction of aeroelastic stability,even structure destruction.Moreover,aeroelasticity might amplify side loads and aggravate its growth rate.However,with increment of inlet pressure,nozzle aeroelastic stability was also increased when a full flow was nearly reached.展开更多
Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printi...Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printing method is also used to build parts, patterns, and molds that feature fine details for a wide range of applications because texture manufacturing by 3D printing is faster, more flexible, and less expensive than traditional techniques. To date, there has been no research on textured surfaces produced by 3D printing. Therefore, a new fabrication method using 3D printing to improve friction and wear properties is a topic worth exploring. In this study, a reciprocating friction tester was used to evaluate the friction and wear properties of different surface textures produced by 3D printing. The surface of specimens was examined by electron microscope and scanning electron microscope before and after the test. The results show that surface texturing can be applied to 3D printed parts to improve their friction and wear performance.展开更多
基金financially supported within the project "Engineer of the Future.Improving the didactic potential of the Poznan University of Technology"-POKL.04.03.00-00-259/12,implemented within the Human Capital Operational Programme,co-financed by the European Union within the European Social Fundby Ministry of Science and Higher Education in Poland as a part of the 02/24/DSPB project
文摘Laser alloying was used for production of thick layers on surface of Nimonic 80A-alloy.For laser surface modification,three types of pre-coated pastes were applied:with amorphous boron,with amorphous boron and molybdenum as well as with amorphous boron and niobium.The microstructure,hardness and wear resistance of produced layers were studied in details.The presence of different types of borides in re-melted zone depended on the paste composition and caused an increase in hardness up to about HV 1000.The wear resistance was evaluated by calculation of mass wear intensity factor Imw and relative mass loss of specimen and counter-specimen.The wear behavior of the tested frictional pairs was determined by 3D interference microscopy,scanning electron microscopy equipped with EDS microanalyzer.The significant increase in abrasive wear resistance was observed in comparison to untreated Nimonic 80A-alloy.The lowest mass loss intensity factor was characteristic of laser-alloyed Nimonic 80A-alloy with boron and niobium(Imw=1.234 mg/(cm2?h)).Laser alloyed-layers indicated abrasive wear mechanism with clearly visible grooves.Laser alloying with boron and niobium resulted in the additional oxidative wear mechanism.In this case,EDS patterns revealed presence of oxygen on the worn surface of specimen.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51478385, 51208409, 51778528 and 51408486)
文摘Slope failure in loess terrains of Northern China during spring thawing period is closely related to the freeze-thaw cycling that surface soils inevitably experienced. Field surveys were carried out on natural and artificial slopes in thirteen surveying sites located in the Northern Shaanxi, the center of Loess Plateau, covering five characteristic topographic features including tablelands, ridges, hills, gullies and valleys. Based on the scale that is involved in freeze-thaw cycling, the induced failures can be classified into three main modes, i.e., erosion, peeling and thaw collapse, depending on both high porosity and loose cementation of loess that is easily affected. Model tests on loess slopes with gradients of 53.1°, 45.0° and 33.7° were carried out to reveal the heat transfer, water migration and deformation during slope failure. The surface morphology of slopes was photographed, with flake shaped erosion and cracks noted. For three slope models, time histories for the thermal regime exhibit three obvious cycles of freeze and thaw andthe maximum frost depth develops downwards as freeze-thaw cycling proceeds. Soil water in the unfrozen domain beneath was migrated towards the slope surface, as can be noticed from the considerable change in the unfrozen water content, almost synchronous with the variation of temperature. The displacement in both vertical and horizontal directions varies over time and three obvious cycles can be traced. The residual displacement for each cycle tends to grow and the slopes with higher gradients are more sensitive to potentially sliding during freeze-thaw cycling.
基金supported by the National Natural Science Foundation of China (Grant No. 11072199)
文摘Side loads and aeroelastic stability of rocket nozzle were studied by solving Navier-Stokes equation coupled with structural equation of motion.The computation was implemented at different total pressure inlet conditions,and flow phenomena of free shock separation(FSS) and restricted shock separation(RSS) were captured.At certain total pressure inlet conditions,it was found that both kinds of separations existed in nozzle flow filed,while RSS exhibited combined space asymmetry and time unsteady characteristics.The corresponding asymmetric circumferential pressure distribution,strong pressure fluctuation in separation region and large range of displacement of shock wave all led to severe side loads.Besides,for flexible nozzles,the low pressure gradient in separation region might reduce structure stability at nozzle exit,resulting in large local deformation.It was also found that aeroelasticity exhibited buffeting characteristic due to the asymmetric separation,resulting in reduction of aeroelastic stability,even structure destruction.Moreover,aeroelasticity might amplify side loads and aggravate its growth rate.However,with increment of inlet pressure,nozzle aeroelastic stability was also increased when a full flow was nearly reached.
基金supported by the Basic Science Research Program of the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology of the Korean government(Grant No.NRF-2015R1D1A1A09060901)Ministry of Trade,Industry and Energy via FY 2015 Korea Institute for the Advancement of technology through Construction Machine R&D Expert Cultivation Program
文摘Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printing method is also used to build parts, patterns, and molds that feature fine details for a wide range of applications because texture manufacturing by 3D printing is faster, more flexible, and less expensive than traditional techniques. To date, there has been no research on textured surfaces produced by 3D printing. Therefore, a new fabrication method using 3D printing to improve friction and wear properties is a topic worth exploring. In this study, a reciprocating friction tester was used to evaluate the friction and wear properties of different surface textures produced by 3D printing. The surface of specimens was examined by electron microscope and scanning electron microscope before and after the test. The results show that surface texturing can be applied to 3D printed parts to improve their friction and wear performance.