-
题名基于混淆交叉支撑向量机树的自动面部表情分类方法
被引量:4
- 1
-
-
作者
徐琴珍
章品正
裴文江
杨绿溪
何振亚
-
机构
东南大学信息科学与工程学院
东南大学计算机科学与工程学院
-
出处
《中国图象图形学报》
CSCD
北大核心
2008年第7期1329-1334,共6页
-
基金
国家自然科学基金项目(60702029
60672093
+1 种基金
60672095)
江苏省自然科学基金项目(BK2006061)
-
文摘
面部表情自动分类是情感信息处理研究中的重要内容,为了提高表情识别的准确率以及鲁棒性,提出了一种基于混淆交叉支撑向量机树的面部表情自动分类方法。该方法依据伪Zernike矩特征,以混淆交叉支撑向量机树对矩特征进行学习,实现面部表情的自动分类。混淆交叉支撑向量机树的结构使模型能够根据教师信号将面部表情识别问题分解,在不同的层次上以相对较低的复杂度解决子问题;在训练阶段,对当前中间节点划分的两个子样本集进行混淆交叉,增强了模型在面部表情识别上的整体泛化性能以及鲁棒性。实验对Cohn-Kanade面部表情数据库中的6类基本表情进行自动分类,准确率达到96.31%;与同样基于该数据库的识别方法相比,该方法在识别正确率和鲁棒性上具有较大的优势。
-
关键词
面部表情自动识别
混淆交叉
支撑向量机树
伪ZERNIKE矩
-
Keywords
automatic facial recognition, confusion cross, support vector machine tree, Pseudo-Zernike moment
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-