期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于2维偏最小二乘法的图像局部特征提取及其在面部表情识别中的应用 被引量:7
1
作者 孙宁 冀贞海 +1 位作者 邹采荣 赵力 《中国图象图形学报》 CSCD 北大核心 2007年第5期847-853,共7页
为了更有效地提取图像的局部特征,提出了一种基于2维偏最小二乘法(two-dimensional partial leastsquare,2DPLS)的图像局部特征提取方法,并将其应用于面部表情识别中。该方法首先利用局部二元模式(localbinary pattern,LBP)算子提取一... 为了更有效地提取图像的局部特征,提出了一种基于2维偏最小二乘法(two-dimensional partial leastsquare,2DPLS)的图像局部特征提取方法,并将其应用于面部表情识别中。该方法首先利用局部二元模式(localbinary pattern,LBP)算子提取一幅图像中所有子块的纹理特征,并将其组合成局部纹理特征矩阵。由于样本图像被转化为局部纹理特征矩阵,因此可将传统PLS方法推广为2DPLS方法,用来提取其中的判别信息。2DPLS方法通过对类成员关系矩阵的构造进行相应的修改,使其适应样本的矩阵形式,并能体现出人脸局部信息重要性的差异。同时,对于类成员关系协方差矩阵的奇异性问题,也推导出了其广义逆的解析解。基于JAFFE人脸表情库的实验结果表明,该方法不但可以有效地提取图像局部特征,并能取得良好的表情识别效果。 展开更多
关键词 偏最小二乘法 2维偏最小二乘法 局部特征提取 局部二元模式 面部表情识别算法
下载PDF
基于双值韦伯算子的深度置信网络表情识别算法
2
作者 郝晓丽 田苗 《中北大学学报(自然科学版)》 北大核心 2017年第6期628-633,638,共7页
针对运用深度置信网络进行面部表情识别时出现的空间结构特征被忽视、运算量大等问题,本文提出了基于双值韦伯局部描述子的深度置信网络算法.首先,以提出的双值韦伯算子为基础,优化传统韦伯算子在空间分布方向单一的特征提取,丰富细节... 针对运用深度置信网络进行面部表情识别时出现的空间结构特征被忽视、运算量大等问题,本文提出了基于双值韦伯局部描述子的深度置信网络算法.首先,以提出的双值韦伯算子为基础,优化传统韦伯算子在空间分布方向单一的特征提取,丰富细节纹理信息,完成了初次特征提取.其次,融合局部纹理信息的表征,借助深度学习在整体结构信息方面的提取优势,运用深度置信网络实现更易识别的高级特征的二次提取.实验结果表明,本算法提高了面部表情识别率,并减少了深度学习的计算量. 展开更多
关键词 面部表情识别算法 韦伯局部描述子 深度置信网络
下载PDF
Cognitive Emotion Model for Eldercare Robot in Smart Home 被引量:4
3
作者 HAN Jing XIE Lun +2 位作者 LI Dan HE Zhijie WANG Zhiliang 《China Communications》 SCIE CSCD 2015年第4期32-41,共10页
Based on the smart home and facial expression recognition, this paper presents a cognitive emotional model for eldercare robot. By combining with Gabor filter, Local Binary Pattern algorithm(LBP) and k-Nearest Neighbo... Based on the smart home and facial expression recognition, this paper presents a cognitive emotional model for eldercare robot. By combining with Gabor filter, Local Binary Pattern algorithm(LBP) and k-Nearest Neighbor algorithm(KNN) are facial emotional features extracted and recognized. Meanwhile, facial emotional features put influence on robot's emotion state, which is described in AVS emotion space. Then the optimization of smart home environment on the cognitive emotional model is specially analyzed using simulated annealing algorithm(SA). Finally, transition probability from any emotional state to a state of basic emotions is obtained based on the cognitive reappraisal strategy and Euclidean distance. The simulation and experiment have tested and verified the effective in reducing negative emotional state. 展开更多
关键词 eldercare robot cognitive emotionmodel emotional state transition AVS emotionspace expression recognition smart home
下载PDF
Facial Expression Recognition by Split Rectangle Based Adaboost
4
作者 Yong-hee HONG Young-joon HAN Hern-soo HAHN 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期17-20,共4页
The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike... The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike featrue of Viola, which is commonly used for the Adaboost training algorithm. The Split Rectangle feature uses the nmsk-like shape composed with 2 independent rectangles, instead of using mask-like shape of Haar-like feature, which is composed of 2 --4 adhered rectangles of Viola. Split Rectangle feature has less di- verged operation than the Haar-like feaze. It also requires less oper- ation because the stun of pixels requires ordy two rectangles. Split Rectangle feature provides various and fast features to the Adaboost, which produrces the strong classifier with increased accuracy and speed. In the experiment, the system had 5.92 ms performance speed and 84 %--94 % accuracy by leaming 5 facial expressions, neutral, happiness, sadness, anger and surprise with the use of the Adaboost based on the Split Rectangle feature. 展开更多
关键词 split rectangle feature Haar-like discrete adaboost facial expression recognition pattern recognition
下载PDF
Using Kinect for real-time emotion recognition via facial expressions 被引量:4
5
作者 Qi-rong MAO Xin-yu PAN +1 位作者 Yong-zhao ZHAN Xiang-jun SHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第4期272-282,共11页
Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their perfor... Emotion recognition via facial expressions (ERFE) has attracted a great deal of interest with recent advances in artificial intelligence and pattern recognition. Most studies are based on 2D images, and their performance is usually computationally expensive. In this paper, we propose a real-time emotion recognition approach based on both 2D and 3D facial expression features captured by Kinect sensors. To capture the deformation of the 3D mesh during facial expression, we combine the features of animation units (AUs) and feature point positions (FPPs) tracked by Kinect. A fusion algorithm based on improved emotional profiles (IEPs) arid maximum confidence is proposed to recognize emotions with these real-time facial expression features. Experiments on both an emotion dataset and a real-time video show the superior performance of our method. 展开更多
关键词 KINECT Emotion recognition Facial expression Real-time classification Fusion algorithm Supportvector machine (SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部