Facial expression recognition consists of determining what kind of emotional content is presented in a human face. The problem presents a complex area for exploration, since it encompasses face acquisition, facial fea...Facial expression recognition consists of determining what kind of emotional content is presented in a human face. The problem presents a complex area for exploration, since it encompasses face acquisition, facial feature tracking, facial ex- pression classification. Facial feature tracking is of the most interest. Active Appearance Model (AAM) enables accurate tracking of facial features in real-time, but lacks occlusions and self-occlusions. In this paper we propose a solution to improve the accuracy of fitting technique. The idea is to include occluded images into AAM training data. We demonstrate the results by running ex- periments using gradient descent algorithm for fitting the AAM. Our experiments show that using fitting algorithm with occluded training data improves the fitting quality of the algorithm.展开更多
A new method is presented for the segmentation of pulmonary parenchyma. The proposed method is based on the area calculation of different objects in the image. The main purpose of the proposed algorithm is the segment...A new method is presented for the segmentation of pulmonary parenchyma. The proposed method is based on the area calculation of different objects in the image. The main purpose of the proposed algorithm is the segment of the lungs images from the computer tomography(CT) images. The original image is binarized using the bit-plane slicing technique and among the different images the best binarized image is chosen. After binarization, the labeling is done and the area of each label is calculated from which the next level of binarized image is obtained. Then, the boundary tracing algorithm is applied to get another level of binarized image. The proposed method is able to extract lung region from the original images. The experimental results show the significance of the proposed method.展开更多
文摘Facial expression recognition consists of determining what kind of emotional content is presented in a human face. The problem presents a complex area for exploration, since it encompasses face acquisition, facial feature tracking, facial ex- pression classification. Facial feature tracking is of the most interest. Active Appearance Model (AAM) enables accurate tracking of facial features in real-time, but lacks occlusions and self-occlusions. In this paper we propose a solution to improve the accuracy of fitting technique. The idea is to include occluded images into AAM training data. We demonstrate the results by running ex- periments using gradient descent algorithm for fitting the AAM. Our experiments show that using fitting algorithm with occluded training data improves the fitting quality of the algorithm.
基金supported (in part) by research funding from Chosun University, Korea, 2013
文摘A new method is presented for the segmentation of pulmonary parenchyma. The proposed method is based on the area calculation of different objects in the image. The main purpose of the proposed algorithm is the segment of the lungs images from the computer tomography(CT) images. The original image is binarized using the bit-plane slicing technique and among the different images the best binarized image is chosen. After binarization, the labeling is done and the area of each label is calculated from which the next level of binarized image is obtained. Then, the boundary tracing algorithm is applied to get another level of binarized image. The proposed method is able to extract lung region from the original images. The experimental results show the significance of the proposed method.