期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
靶向叶酸受体的蟾酥提取物长循环脂质体的制备及其体外抗肿瘤活性 被引量:4
1
作者 郭波红 廖灿城 +3 位作者 许丹翘 刘晓红 方宇奇 赵宇红 《广东药科大学学报》 CAS 2017年第5期569-574,共6页
目的制备具有靶向叶酸受体的蟾酥提取物长循环脂质体,并对其进行表征,再进一步考察其体外抗肿瘤活性。方法合成叶酸-聚乙二醇单硬脂酸酯并用红外光谱和质谱进行表征,采用薄膜分散法制备靶向叶酸受体的蟾酥提取物长循环脂质体,用透射电... 目的制备具有靶向叶酸受体的蟾酥提取物长循环脂质体,并对其进行表征,再进一步考察其体外抗肿瘤活性。方法合成叶酸-聚乙二醇单硬脂酸酯并用红外光谱和质谱进行表征,采用薄膜分散法制备靶向叶酸受体的蟾酥提取物长循环脂质体,用透射电镜、激光粒度仪、高速离心法分别测定脂质体的形状、粒径、电位、包封率,MTT法考察脂质体对肿瘤细胞的抑制作用。结果经红外光谱及质谱分析证实,成功合成了靶向材料叶酸-聚乙二醇单硬脂酸酯;制备的靶向叶酸受体的蟾酥提取物长循环脂质体在透射电镜视野中粒径大小均一,约160 nm,Zeta电位约4.0 mV,包封率达90%以上;体外细胞毒性显示,叶酸修饰的蟾酥提取物长循环脂质体的IC_(50)值为0.46μg/mL,普通长循环脂质体的IC_(50)值为0.76μg/mL。结论成功合成叶酸-聚乙二醇单硬脂酸酯靶向材料并构建了靶向叶酸受体的蟾酥提取物长循环脂质体,可靶向性抑制肿瘤细胞生长。 展开更多
关键词 蟾酥提取物 靶向叶酸受体 长循环脂质体 体外抗肿瘤活性
下载PDF
Co-delivery of paclitaxel and gemcitabine via folic acid-conjugated polymeric multi-drug nanoparticles (FA-PMDNPs) for the treatment of breast cancer 被引量:2
2
作者 Meng Lei Xueyuan Wang +4 位作者 Hang Miao Jia Wang Sijia Sha Jiang Zhu Yongqiang Zhu 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2020年第10期701-710,共10页
Multi-drug delivery focuses on different signaling pathways in cancer cells and has synergistic antiproliferative effects.In this manuscript,we developed folic acid(FA)-conjugated polymeric multi-drug nanoparticles(FA... Multi-drug delivery focuses on different signaling pathways in cancer cells and has synergistic antiproliferative effects.In this manuscript,we developed folic acid(FA)-conjugated polymeric multi-drug nanoparticles(FA-PMDNPs)consisting of poly-L-lysine(PLL)and poly glutamic-conjugated PTX/GEM(PGA-PTX and PGA-GEM)for FA receptor-targeted synergistic breast cancer therapy.The carboxyl-rich structure of PGA provided plenty reaction sites and negative charge for drug loading.Transmission electron microscopy(TEM)results showed that FA-PMDNPs had uniform particle size and spherical morphology.The hemolysis study proved that FA-PMDNPs had good biocompatibility.In vitro cell viability and in vivo studies showed that FA-PMDNPs more effectively inhibited the proliferation of FA receptor(FR)-overexpressing breast cancer cells(4T1)than the pure drugs.Consequently,these results demonstrated that FA-PMDNPs could be effectively targeted at cancer cells compared with free drugs,indicating their strong potential as efficient multi-drug-carrying nano-platforms for cancer treatment. 展开更多
关键词 FA-receptor targeted Polymeric nanoparticles Combined chemotherapy Breast cancer Drug targeted delivery
原文传递
Enhanced tumor-targeted delivery of anticancer drugs by folic acid-conjugated pH-sensitive polymeric micelles 被引量:2
3
作者 Chuhang Zhou Xinping Hu +4 位作者 Qi Liu Leqi Wang Yuanhang Zhou Yao Jin Yan Liu 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2020年第9期626-636,共11页
In order to enhance the targeted delivery of anticancer drugs by polymeric micelles, folic acid(FA), the ligand of folate receptor(FR) over-expressed in the most cancer cells, modified p H-sensitive polymeric micelles... In order to enhance the targeted delivery of anticancer drugs by polymeric micelles, folic acid(FA), the ligand of folate receptor(FR) over-expressed in the most cancer cells, modified p H-sensitive polymeric micelles were designed and fabricated to encapsulate doxorubicin(DOX) by combination of p H-sensitive amphiphilic polymer poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) with FA-conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide). The prepared micelles were characterized to have about 36 nm in diameter with narrow distribution, well-defined spherical shape observed under TEM and p H-responsive drug release behavior. Moreover, the tumor targeting ability of the FA-modified p H-sensitive polymeric micelles was demonstrated by the cellular uptake, in vitro cytotoxicity to FR-positive KB cells and in vivo real time near-infrared fluorescence imaging in KB tumor-bearing nude mice. The efficient drug delivery by the micelles was ascribed to the synergistic effects of FR-mediated targeting and p H-triggered drug release. In conclusion, the designed FR-targeted p H-sensitive polymeric micelles might be of great potential in tumor targeted delivery of water-insoluble anticancer drugs. 展开更多
关键词 pH-sensitive polymeric micelles Folate receptor-targeted Tumor-targeted delivery Cell uptake DOXORUBICIN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部