本文证明了(1)设(X_n,■_n)为M.Talagrand意义下的mil且满足条件C^+:τ∈T,其中T为(■_n)停时全体构成的集合,则(X_n)a.s.收敛.(2)设(X_n,■_n)为渐近一致可积的适应序列,则(X_n)a.s.收敛与(X_n)为mil等价.(3)L^1极限鞅,GFT(game fairer...本文证明了(1)设(X_n,■_n)为M.Talagrand意义下的mil且满足条件C^+:τ∈T,其中T为(■_n)停时全体构成的集合,则(X_n)a.s.收敛.(2)设(X_n,■_n)为渐近一致可积的适应序列,则(X_n)a.s.收敛与(X_n)为mil等价.(3)L^1极限鞅,GFT(game fairer with time)及M.Talagrand意义下的mil在函数f:R→R满足条件:①连续②当|x|→∞,f(x)=O(x)时具有稳定性.展开更多
文摘本文证明了(1)设(X_n,■_n)为M.Talagrand意义下的mil且满足条件C^+:τ∈T,其中T为(■_n)停时全体构成的集合,则(X_n)a.s.收敛.(2)设(X_n,■_n)为渐近一致可积的适应序列,则(X_n)a.s.收敛与(X_n)为mil等价.(3)L^1极限鞅,GFT(game fairer with time)及M.Talagrand意义下的mil在函数f:R→R满足条件:①连续②当|x|→∞,f(x)=O(x)时具有稳定性.