Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion condi...Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions. Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints, locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists. The natural stress changes of LCL at five different knee flexion angles (0°, 30°60°, 90°, 120°) and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured. Results: The maximum stress reached to 87%-113% versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension) when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation. Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to ante- rior-posterior tibial translation or internal-external rotation at early 30° of knee flexions.展开更多
The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxi...The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxin-Yixian rift basin,dips NW gently,and shows corrugation folds.Exposure structures,microstructures,and quartz C-axis fabrics all indicate top-to-the WNW sense of shear,i.e.,ca.285°,for the shear zone.Estimates of the deformation temperatures(ca.550-250°C) demonstrate its mid-crustal origination and progressive deformation from deep to shallow levels.The northern segment of the shear zone shows relatively weak exhumation with exposures of low-temperature mylonites whereas its middle and southern segments have more intense uplifting with exposures of high-temperature mylonites.Biotite and muscovite 40 Ar/39 Ar ages,U-Pb dating results of zircon from dikes and plutons as well as formation ages of the supra-detachment basin all suggest the formation time of 135-100 Ma for the core complex.The formation was also associated with syntectonic emplacement of the Early Cretaceous Shishan pluton.The western margin of the core complex was truncated by the Sunjiawan-Shaohuyingzi brittle normal fault when it uplifted to shallow crust levels,and finally exhumed to near-surface levels.The core complex was developed by the rolling-hinge model under WNW-ESE extension during the Early Cretaceous peak destruction of the North China Craton.Ductile flow did not appear in the lower plate,therefore not supporting the low-crust gravitational collapse.展开更多
文摘Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions. Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints, locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists. The natural stress changes of LCL at five different knee flexion angles (0°, 30°60°, 90°, 120°) and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured. Results: The maximum stress reached to 87%-113% versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension) when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation. Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to ante- rior-posterior tibial translation or internal-external rotation at early 30° of knee flexions.
基金supported by National Natural Science Foundation of China (Grant Nos. 90714004,40828001,41072162)
文摘The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxin-Yixian rift basin,dips NW gently,and shows corrugation folds.Exposure structures,microstructures,and quartz C-axis fabrics all indicate top-to-the WNW sense of shear,i.e.,ca.285°,for the shear zone.Estimates of the deformation temperatures(ca.550-250°C) demonstrate its mid-crustal origination and progressive deformation from deep to shallow levels.The northern segment of the shear zone shows relatively weak exhumation with exposures of low-temperature mylonites whereas its middle and southern segments have more intense uplifting with exposures of high-temperature mylonites.Biotite and muscovite 40 Ar/39 Ar ages,U-Pb dating results of zircon from dikes and plutons as well as formation ages of the supra-detachment basin all suggest the formation time of 135-100 Ma for the core complex.The formation was also associated with syntectonic emplacement of the Early Cretaceous Shishan pluton.The western margin of the core complex was truncated by the Sunjiawan-Shaohuyingzi brittle normal fault when it uplifted to shallow crust levels,and finally exhumed to near-surface levels.The core complex was developed by the rolling-hinge model under WNW-ESE extension during the Early Cretaceous peak destruction of the North China Craton.Ductile flow did not appear in the lower plate,therefore not supporting the low-crust gravitational collapse.