Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the com...Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Gortler number while the mode W dominates at larger G/Srtler numbers. These two modes are both responsible for the flow transition in the hypersonic flows especially when Gortler number is in the high value range in which the crossover of these two modes takes place. Such high Gortler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability behavior of the Gortler modes. The effects of the Mach number on the multiple Gortler modes are studied within a chosen Mach number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g., Ma ≥4, the growth rate crossover of the mode T and mode W occurs both in the conventional G-β map as well as on the route downstream for a fixed wavelength disturbance. Four particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis. The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.展开更多
The supersonic mixing layer flow,consisting of a relatively cold,slow diluted hydrogen stream and a hot,faster air stream,is numerically simulated with detailed transport properties and chemical reaction mechanisms.Th...The supersonic mixing layer flow,consisting of a relatively cold,slow diluted hydrogen stream and a hot,faster air stream,is numerically simulated with detailed transport properties and chemical reaction mechanisms.The evolution of the combustion process in the supersonic reacting mixing layer is observed and unsteady phenomena of ignition,flame propagation and extinction are successfully captured.The ignition usually takes place at the air stream side of braid regions between two vortexes due to much higher temperature of premixed gases.After ignition,the flame propagates towards two vortexes respectively located on the upstream and downstream of the ignition position.The apparent flame speed is 1569.97 m/s,which is much higher than the laminar flame speed,resulting from the effects of expansion,turbulence,vortex stretching and consecutive ignition.After the flame arrives at the former vortex,the flame propagates along the outer region of the vortex in two branches.Then the upper flame branch close to fuel streamside distinguishes gradually due to too fuel-riched premixed mixtures in the front of the flame and the strong cooling effect of the adjacent cool fuel flow,while the lower flame branch continues to propagate in the vortex.展开更多
Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. De...Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction.展开更多
The paper deals with experimental and numerical results of investigation into supersonic and transonic flow past a two-dimensional model ejector. Results of optical measurements show a flow structure and flow paramete...The paper deals with experimental and numerical results of investigation into supersonic and transonic flow past a two-dimensional model ejector. Results of optical measurements show a flow structure and flow parameter development in the entrance part of the mixing chamber of the ejector. Numerical results are obtained by means of both the straight solution of shock waves in supersonic flow field using classical relations of parameters of shock waves and the Fluent 6 program. Results of numerical solutions are compared with experimental pictures of flow fields. Flow structure development in the mixing chamber is analysed in detail.展开更多
The Qinling-Dabie orogen is an important tectonic belt that trends east-west and divides continental China into northern and southern parts.Due to its strong deformation,complicated structure,multiphase structural sup...The Qinling-Dabie orogen is an important tectonic belt that trends east-west and divides continental China into northern and southern parts.Due to its strong deformation,complicated structure,multiphase structural superposition and the massive exposed high and ultrahigh metamorphic rocks,its tectonic formation and geodynamical evolution are hot research topics worldwide.Previous studies mainly focused on the regional geological or geochemical aspects,whereas the geophysical constraints are few and isolated,in particular on the orogenic scale.Here,we integrate the available P- and S-wave seismic and seismicity data,and construct the rheological structures along the Qinling-Dabie orogen.The results demonstrate that:(1)there are strong lateral variations in the crustal velocity between the western and eastern sections of the Qinling-Dabie orogen,indicating the different origin and tectonic evolution between these two parts;(2) the lateral variations are also manifested in the rheological structure.The rigid blocks,such as South China and Ordos basin(North China Craton),resist deformation and show low seismicity.The weak regions,such as the margin of Tibet and western Qinling-Dabie experience strong deformation and accumulated stress,thus show active seismicity;(3) in the lower crust of most of the HP/UHP terranes the values of P-wave velocity are higher than the global average ones;finally(4) low P- and S-wave velocities and low strength in the lower crust and lithospheric mantle beneath Dabie indicate lithospheric delamination,and/or high temperature,and partial melting condition.展开更多
Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible tur...Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.展开更多
A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical ene...A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f, to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed de- tached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performanc- es are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic fiat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.展开更多
Turbulence modeling has played important roles in solving engineering problems. However, with the development of aero-space technology, turbulence modeling faces new challenges. How to further improve turbulence model...Turbulence modeling has played important roles in solving engineering problems. However, with the development of aero-space technology, turbulence modeling faces new challenges. How to further improve turbulence modeling for su-per/hypersonic flows is an urgent problem. Through analyzing a set of data resulting from DNS and experiments, it is foundthat some most popular models suffer from essential flaws, and can be hardly improved following the traditional mode ofthinking. On the contrary, the BL model, which is one of the simplest and widely-used models, can be further improved. In thispaper, through analyzing results from DNS data, the main cause of the inaccuracy in applying the BL model to supersonic andhypersonic turbulent boundary layers is found to have resulted from the mismatch between the location of the matching pointof the inner and outer layers of the BL model determined by the conventional way and those given by DNS. Improvement onthis point, as well as other improvements is proposed. Its effectiveness is verified through the comparison with DNS results.展开更多
The transition criterion in the improved eN method is that transition would occur whenever the velocity amplitude of disturbance reaches 1%-2% of the free stream velocity,while in the conventional eN method,the N fact...The transition criterion in the improved eN method is that transition would occur whenever the velocity amplitude of disturbance reaches 1%-2% of the free stream velocity,while in the conventional eN method,the N factor is an empirical factor.In this paper the reliability of this key assumption in the improved eN method is checked by results of transition prediction by using the Parabolized Stability Equations(PSE).Transition locations of an incompressible boundary layer and a hypersonic boundary layer at Mach number 6 on a flat plate are predicted by both the improved eN method and the PSE method.Results from both methods agree fairly well with each other,implying that the transition criterion proposed in the improved eN method is reliable.展开更多
When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, in order to control the transonic flow field with shock wave, a condensing f...When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, in order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock / boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically and experimentally. The result obtained showed that the total pressure loss in the flow fields might be effectively reduced by the suitable combination between non-equilibrium condensation and the position of porous wall.展开更多
Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability...Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiments. The results show that the Van Driest transformed mean velocity profile satisfies the incompressible scalings and reveals a log-law region that extends to yld=0.4, which is further away from the wall than that in incompressible boundary layers. The Reynolds stress profiles exhibit a plateau-like region in the log-law region. The hairpin vortices in the streamwise-wall-normal plane are identified using different velocity decompositions, which are similar to the results of the flow visualization via NPLS technique. And multiple hairpin vortices are found moving at nearly the same velocity in different regions of the boundary layer. In the streamwise-spanwise plane, elongated streaky structures are observed in the log-law region, and disappear in the outer region of the boundary layer, which is contrary to the flow visualization results.展开更多
The main source of the noise of an axial flow fan is the fluctuating pressure field on blade surfaces caused by the shedding of vortices at the trailing edge of blades.An analytical model to predict the vortex sheddin...The main source of the noise of an axial flow fan is the fluctuating pressure field on blade surfaces caused by the shedding of vortices at the trailing edge of blades.An analytical model to predict the vortex shedding noise generated at the trailing edge of blades of axial flow fans was proposed by Lee in 1993.In this model,for mathematical convenience,an idealized vortex street is considered.However,the agreement between the analytical results and the experimental data needs to be improved because of the simplification about the Karman vortex street in the wake of blade.In the present study,a modified model is proposed based on the prediction model by Lee.The boundary layer theory is used to analyze and calculate the boundary layer development on both the pressure and the suction sides of blades.Considering the effect of boundary layer separation on the location of noise source,the predicted overall sound pressure level compares favorably with the experimental data of an axial fan.In the calculation of A-weighted sound pressure level(La),considering the effect of static pressure on radiate energy,the predicted broadband noise with the modified model compares favorably with the experimental data of a multiblade centrifugal fan.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10932005 and 11202115)
文摘Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Gortler number while the mode W dominates at larger G/Srtler numbers. These two modes are both responsible for the flow transition in the hypersonic flows especially when Gortler number is in the high value range in which the crossover of these two modes takes place. Such high Gortler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability behavior of the Gortler modes. The effects of the Mach number on the multiple Gortler modes are studied within a chosen Mach number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g., Ma ≥4, the growth rate crossover of the mode T and mode W occurs both in the conventional G-β map as well as on the route downstream for a fixed wavelength disturbance. Four particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis. The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.
文摘The supersonic mixing layer flow,consisting of a relatively cold,slow diluted hydrogen stream and a hot,faster air stream,is numerically simulated with detailed transport properties and chemical reaction mechanisms.The evolution of the combustion process in the supersonic reacting mixing layer is observed and unsteady phenomena of ignition,flame propagation and extinction are successfully captured.The ignition usually takes place at the air stream side of braid regions between two vortexes due to much higher temperature of premixed gases.After ignition,the flame propagates towards two vortexes respectively located on the upstream and downstream of the ignition position.The apparent flame speed is 1569.97 m/s,which is much higher than the laminar flame speed,resulting from the effects of expansion,turbulence,vortex stretching and consecutive ignition.After the flame arrives at the former vortex,the flame propagates along the outer region of the vortex in two branches.Then the upper flame branch close to fuel streamside distinguishes gradually due to too fuel-riched premixed mixtures in the front of the flame and the strong cooling effect of the adjacent cool fuel flow,while the lower flame branch continues to propagate in the vortex.
文摘Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction.
文摘The paper deals with experimental and numerical results of investigation into supersonic and transonic flow past a two-dimensional model ejector. Results of optical measurements show a flow structure and flow parameter development in the entrance part of the mixing chamber of the ejector. Numerical results are obtained by means of both the straight solution of shock waves in supersonic flow field using classical relations of parameters of shock waves and the Fluent 6 program. Results of numerical solutions are compared with experimental pictures of flow fields. Flow structure development in the mixing chamber is analysed in detail.
基金support offered by the Strategic Priority Research Program(B) of the Chinese Academy of Sciences(Grant No.XDB18030101)the National Natural Science Foundation of China(Grant No.41504069) and the Italian Projects PRIN 2010-2011, PRIN 2015
文摘The Qinling-Dabie orogen is an important tectonic belt that trends east-west and divides continental China into northern and southern parts.Due to its strong deformation,complicated structure,multiphase structural superposition and the massive exposed high and ultrahigh metamorphic rocks,its tectonic formation and geodynamical evolution are hot research topics worldwide.Previous studies mainly focused on the regional geological or geochemical aspects,whereas the geophysical constraints are few and isolated,in particular on the orogenic scale.Here,we integrate the available P- and S-wave seismic and seismicity data,and construct the rheological structures along the Qinling-Dabie orogen.The results demonstrate that:(1)there are strong lateral variations in the crustal velocity between the western and eastern sections of the Qinling-Dabie orogen,indicating the different origin and tectonic evolution between these two parts;(2) the lateral variations are also manifested in the rheological structure.The rigid blocks,such as South China and Ordos basin(North China Craton),resist deformation and show low seismicity.The weak regions,such as the margin of Tibet and western Qinling-Dabie experience strong deformation and accumulated stress,thus show active seismicity;(3) in the lower crust of most of the HP/UHP terranes the values of P-wave velocity are higher than the global average ones;finally(4) low P- and S-wave velocities and low strength in the lower crust and lithospheric mantle beneath Dabie indicate lithospheric delamination,and/or high temperature,and partial melting condition.
基金supported by the National Natural Science Foundation of China (Grant No. 11102079)the Aeronautical Science Foundation of China (Grant No. 20111456005)
文摘Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.
基金supported by the National Basic Research Program of China(Grant No.2009CB724104)the Innovation Foundation of BUAA for PhD Graduates and the Academic New Artist Award of BUAA for PhD Graduates
文摘A concept of entropy increment ratio ( s- ) is introduced for compressible turbulence simulation through a series of direct nu- merical simulations (DNS). s- represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f, to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed de- tached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performanc- es are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic fiat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.
基金supported by the National Basic Research Program of China (Grant No. 2009CB724103)the National Aeronautics Base Science Foundation of China (Grant No. 2010ZA48002)
文摘Turbulence modeling has played important roles in solving engineering problems. However, with the development of aero-space technology, turbulence modeling faces new challenges. How to further improve turbulence modeling for su-per/hypersonic flows is an urgent problem. Through analyzing a set of data resulting from DNS and experiments, it is foundthat some most popular models suffer from essential flaws, and can be hardly improved following the traditional mode ofthinking. On the contrary, the BL model, which is one of the simplest and widely-used models, can be further improved. In thispaper, through analyzing results from DNS data, the main cause of the inaccuracy in applying the BL model to supersonic andhypersonic turbulent boundary layers is found to have resulted from the mismatch between the location of the matching pointof the inner and outer layers of the BL model determined by the conventional way and those given by DNS. Improvement onthis point, as well as other improvements is proposed. Its effectiveness is verified through the comparison with DNS results.
基金supported by the National Natural Science Foundation of China (Grant No.11002098)the National Basic Research Program of China (Grant No.2009CB724103)the Specialized Research Fund for the Doctoral Program of Higher Education
文摘The transition criterion in the improved eN method is that transition would occur whenever the velocity amplitude of disturbance reaches 1%-2% of the free stream velocity,while in the conventional eN method,the N factor is an empirical factor.In this paper the reliability of this key assumption in the improved eN method is checked by results of transition prediction by using the Parabolized Stability Equations(PSE).Transition locations of an incompressible boundary layer and a hypersonic boundary layer at Mach number 6 on a flat plate are predicted by both the improved eN method and the PSE method.Results from both methods agree fairly well with each other,implying that the transition criterion proposed in the improved eN method is reliable.
文摘When non-equilibrium condensation occurs in a supersonic flow field, the flow is affected by the latent heat released. In the present study, in order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock / boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically and experimentally. The result obtained showed that the total pressure loss in the flow fields might be effectively reduced by the suitable combination between non-equilibrium condensation and the position of porous wall.
基金supported by the National Basic Research Program of China (Grant No. 2009CB724100)
文摘Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiments. The results show that the Van Driest transformed mean velocity profile satisfies the incompressible scalings and reveals a log-law region that extends to yld=0.4, which is further away from the wall than that in incompressible boundary layers. The Reynolds stress profiles exhibit a plateau-like region in the log-law region. The hairpin vortices in the streamwise-wall-normal plane are identified using different velocity decompositions, which are similar to the results of the flow visualization via NPLS technique. And multiple hairpin vortices are found moving at nearly the same velocity in different regions of the boundary layer. In the streamwise-spanwise plane, elongated streaky structures are observed in the log-law region, and disappear in the outer region of the boundary layer, which is contrary to the flow visualization results.
基金supported by National Natural Science Foundation of China(51206149,51376055)Zhejiang Province Science and Technology Innovation Team Project(2013TD18)
文摘The main source of the noise of an axial flow fan is the fluctuating pressure field on blade surfaces caused by the shedding of vortices at the trailing edge of blades.An analytical model to predict the vortex shedding noise generated at the trailing edge of blades of axial flow fans was proposed by Lee in 1993.In this model,for mathematical convenience,an idealized vortex street is considered.However,the agreement between the analytical results and the experimental data needs to be improved because of the simplification about the Karman vortex street in the wake of blade.In the present study,a modified model is proposed based on the prediction model by Lee.The boundary layer theory is used to analyze and calculate the boundary layer development on both the pressure and the suction sides of blades.Considering the effect of boundary layer separation on the location of noise source,the predicted overall sound pressure level compares favorably with the experimental data of an axial fan.In the calculation of A-weighted sound pressure level(La),considering the effect of static pressure on radiate energy,the predicted broadband noise with the modified model compares favorably with the experimental data of a multiblade centrifugal fan.