期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
论旋律的“音程向位”分析法及不同风格音乐作品中旋律“音程向位”的规律 被引量:1
1
作者 魏扬 《贵州大学学报(艺术版)》 2010年第2期34-38,共5页
旋律的"音程向位"是美国音乐理论家肯特.威廉姆斯提出的概念,旨在分析音乐作品时对旋律中音程的方向和尺寸进行定位描述。笔者补充和完善了这种分析方法,对不同风格音乐作品①中旋律"音程向位"的规律进行研究,体会... 旋律的"音程向位"是美国音乐理论家肯特.威廉姆斯提出的概念,旨在分析音乐作品时对旋律中音程的方向和尺寸进行定位描述。笔者补充和完善了这种分析方法,对不同风格音乐作品①中旋律"音程向位"的规律进行研究,体会作曲家们在创作旋律时隐藏于感性和理性之中的"音程向位感",通过分析和归纳,希望能为日后的旋律创作提供一种新的构思方式。 展开更多
关键词 旋律 音程向位 音程 音程量 音程比例图
下载PDF
尤·霍洛波夫的理论与阿伦·福特音级集合分析方法的尝试性结合——以韦伯恩《弦乐四重奏小品六首》Op.9-1为例
2
作者 王进 张宝华 《乐府新声(沈阳音乐学院学报)》 2007年第3期15-24,共10页
20世纪的音乐分析理论在20世纪音乐的影响下发生了前所未有的发展。各种针对性和目的性极强的分析理论相继产生并迅速得到推广。本文尝试将霍洛波夫的分析方法和阿伦·福特音级集合分析方法相结合,对韦伯恩《弦乐四重奏小品六首》Op... 20世纪的音乐分析理论在20世纪音乐的影响下发生了前所未有的发展。各种针对性和目的性极强的分析理论相继产生并迅速得到推广。本文尝试将霍洛波夫的分析方法和阿伦·福特音级集合分析方法相结合,对韦伯恩《弦乐四重奏小品六首》Op9-1中的音高结构进行分析。希望两种分析方法的结合能使分析结果更为全面、透彻。 展开更多
关键词 20世纪音乐/共同逻辑原理/音级集合/音高结构/音程
下载PDF
The Use of Acoustic Quality Assessment in the Management of the Road Noise Reduction Project
3
作者 Waldemar Paszkowski 《Management Studies》 2018年第5期338-345,共8页
The article presents a new approach to the tasks of noise assessment and reduction in the urbanized environment endangered by road noise sources. It was proposed to include the acoustic quality model in the currently ... The article presents a new approach to the tasks of noise assessment and reduction in the urbanized environment endangered by road noise sources. It was proposed to include the acoustic quality model in the currently applied quantitative noise assessment in the management of urbanized environment. In particular, this model takes into account subjective features of sound quality, i.e.: loudness, sharpness, roughness, and fluctuation strength as well as noise mmoya^ce assessment obtained in laboratory conditions. The proposed way can be used in estimating investment costs of an acoustic barrier at the design stage 展开更多
关键词 acoustic barrier acoustic quality noise management noise reduction urban areas
下载PDF
高为杰钢琴曲《冬雪》分析 被引量:7
4
作者 张忠平 《中国音乐》 CSSCI 北大核心 2007年第4期121-125,146,共6页
在现代无调性音乐作品中,音级集合作为音乐深层结构中的音高系统,在音乐的发展进程中,具有严密的音高组织逻辑与结构力功能。全音程四音集合[0、1、4、6]与[0、1、3、7]由于在音程涵量上具有潜在的同构性,使得二者可形成多种配套关系,... 在现代无调性音乐作品中,音级集合作为音乐深层结构中的音高系统,在音乐的发展进程中,具有严密的音高组织逻辑与结构力功能。全音程四音集合[0、1、4、6]与[0、1、3、7]由于在音程涵量上具有潜在的同构性,使得二者可形成多种配套关系,高为杰先生的钢琴曲《冬雪》以这两个集合的配套为基本音高素材写成,本文将结合音级集合理论对这部作品做深入的研究。 展开更多
关键词 音级集合 配套 同构性 音程
原文传递
Solutions to Forced and Unforced Lin–Reissner–Tsien Equations for Transonic Gas Flows on Various Length Scales
5
作者 Kyle A.Theaker Robert A.Van Gorder 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第3期309-316,共8页
The Lin–Reissner–Tsien equation is useful for studying transonic gas flows, and has appeared in both forced and unforced forms in the literature. Defining arbitrary spatial scalings, we are able to obtain a family o... The Lin–Reissner–Tsien equation is useful for studying transonic gas flows, and has appeared in both forced and unforced forms in the literature. Defining arbitrary spatial scalings, we are able to obtain a family of exact similarity solutions depending on one free parameter in addition to the model parameter holding the scalings. Numerical solutions compare favorably with the exact solutions in regions where the exact solutions are valid. Mixed wave-similarity solutions, which describe wave propagation in one variable and self-similar scaling of the entire solution, are also given,and we show that such solutions can only exist when the wave propagation is sufficiently slow. We also extend the Lin–Reissner–Tsien equation to have a forcing term, as such equations have entered the physics literature recently. We obtain both wave and self-similar solutions for the forced equations, and we are able to give conditions under which the force function allows for exact solutions. We then demonstrate how to obtain these exact solutions in both the traveling wave and self-similar cases. There results constitute new and potentially physically interesting exact solutions of the Lin–Reissner–Tsien equation and in particular suggest that the forced Lin–Reissner–Tsien equation warrants further study. 展开更多
关键词 Lin-Reissner-Tsien equation similarity transform nonlinear waves exact solutions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部