This paper reports results of the authors’ studies on the virtual design method used in the development of low noise intake system of I.C. engine. The resulting high pass-by noise at level above the legislative targe...This paper reports results of the authors’ studies on the virtual design method used in the development of low noise intake system of I.C. engine. The resulting high pass-by noise at level above the legislative target at full throttle when engine speed was around 5200 r/min necessitated a BEM-aided redesign task, following the typical process of design and development of an intake system. During the initial design, based on the acoustic theory and the requirements (1. The air flux of the redesigned should equal to or exceed the value of the original flux; 2. The filtering area must not be degraded), and considering the constraint of space in the engine compartment, total volume and rough internal dimensions were determined. During the detailed design, the exact internal dimensions of the air cleaner were determined, and an effective method was applied to improve the acoustic performance at low frequency. The predicted sound power of the intake system indicated that the objective of reducing the overall engine noise by minimizing intake system noise was achieved.展开更多
文摘This paper reports results of the authors’ studies on the virtual design method used in the development of low noise intake system of I.C. engine. The resulting high pass-by noise at level above the legislative target at full throttle when engine speed was around 5200 r/min necessitated a BEM-aided redesign task, following the typical process of design and development of an intake system. During the initial design, based on the acoustic theory and the requirements (1. The air flux of the redesigned should equal to or exceed the value of the original flux; 2. The filtering area must not be degraded), and considering the constraint of space in the engine compartment, total volume and rough internal dimensions were determined. During the detailed design, the exact internal dimensions of the air cleaner were determined, and an effective method was applied to improve the acoustic performance at low frequency. The predicted sound power of the intake system indicated that the objective of reducing the overall engine noise by minimizing intake system noise was achieved.