Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent...Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.展开更多
Based on confusions between hidden Markov model (HMM) states, a state-restructuring method was proposed. In the method, HMM states were restructured by sharing Gaussian components with their related states, and the re...Based on confusions between hidden Markov model (HMM) states, a state-restructuring method was proposed. In the method, HMM states were restructured by sharing Gaussian components with their related states, and the re-estimation to the increased-parameters, i.e., the inter-state weights, was derived under the expectation maximization (EM) framework. Experiments were performed on speaker-independent, large vocabulary, continuous Mandarin speech recognition. Experimental results showed that the state-restructured systems outperformed the baseline, and achieve significant improvement on recognition accuracy compared with the conventional parameter-increasing method. Such comparative results confirmed that the state-restructuring method was efficient.展开更多
Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional fe...Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional features construct a nonlinear problem in the input space, and SVMs based on nonlinear mapping can solve it more effectively than other linear methods. Multi class classification based on SVMs with a soft decision function is constructed to classify the four emotion situations. Compared with principal component analysis (PCA) method and modified PCA method, SVMs perform the best result in multi class discrimination by using nonlinear kernel mapping.展开更多
In order to improve the performance of general sidelobe canceller (GSC) based speech enhancement, a leakage constraints decision feedback generalized sidelobe canceller(LCDF-GSC) algorithm is proposed. The method ...In order to improve the performance of general sidelobe canceller (GSC) based speech enhancement, a leakage constraints decision feedback generalized sidelobe canceller(LCDF-GSC) algorithm is proposed. The method adopts DF-GSC against signal mismatch, and introduces a leakage factor in the cost function to deal with the speech leakage problem which is caused by the part of the speech signal in the noise reference signal. Simulation results show that although the signal-to-noise ratio (SNR) of the speech signal through LCDF-GSC is slightly less than that of DF-GSC, the IS measurements show that the distortion of the former is less than that of the latter. MOS (mean opinion score) scores also indicate that the LCDF-GSC algorithm is better than DF- GSC and the Weiner filter algorithm,展开更多
In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm base...In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm based on the combination of the emotional data field (EDF) and the ant colony search (ACS) strategy, called the EDF-ACS algorithm, is proposed. More specifically, the inter- relationship among the turn-based acoustic feature vectors of different labels are established by using the potential function in the EDF. To perform the spontaneous speech emotion recognition, the artificial colony is used to mimic the turn- based acoustic feature vectors. Then, the canonical ACS strategy is used to investigate the movement direction of each artificial ant in the EDF, which is regarded as the emotional label of the corresponding turn-based acoustic feature vector. The proposed EDF-ACS algorithm is evaluated on the continueous audio)'visual emotion challenge (AVEC) 2012 dataset, which contains the spontaneous, non-prototypical and unsegmented speech emotion data. The experimental results show that the proposed EDF-ACS algorithm outperforms the existing state-of-the-art algorithm in turn-based speech emotion recognition.展开更多
In this paper, a new speech recognition method was proposed, which integrated a VQ distortion measure and a discrete HMM. The VQ HMM uses a VQ distortion measure at each state instead of a discrete output probabili...In this paper, a new speech recognition method was proposed, which integrated a VQ distortion measure and a discrete HMM. The VQ HMM uses a VQ distortion measure at each state instead of a discrete output probability used by a discrete HMM. The VQ HMM is described, and its speech recognition performance is compared with the conventional HMMs through the experiments on speaker independent Chinese spoken digit recognition. The comparisons confirm that the new method over performed traditional HMMs.展开更多
A machine learning based speech enhancement method is proposed to improve the intelligibility of whispered speech. A binary mask estimated by a two-class support vector machine (SVM) classifier is used to synthesize...A machine learning based speech enhancement method is proposed to improve the intelligibility of whispered speech. A binary mask estimated by a two-class support vector machine (SVM) classifier is used to synthesize the enhanced whisper. A novel noise robust feature called Gammatone feature cosine coefficients (GFCCs) extracted by an auditory periphery model is derived and used for the binary mask estimation. The intelligibility performance of the proposed method is evaluated and compared with the traditional speech enhancement methods. Objective and subjective evaluation results indicate that the proposed method can effectively improve the intelligibility of whispered speech which is contaminated by noise. Compared with the power subtract algorithm and the log-MMSE algorithm, both of which do not improve the intelligibility in lower signal-to-noise ratio (SNR) environments, the proposed method has good performance in improving the intelligibility of noisy whisper. Additionally, the intelligibility of the enhanced whispered speech using the proposed method also outperforms that of the corresponding unprocessed noisy whispered speech.展开更多
British English and American English are regarded as the two major varieties of English in the world, and Canadian English is often treated as a variation of American English. The paper aims to identify the major phon...British English and American English are regarded as the two major varieties of English in the world, and Canadian English is often treated as a variation of American English. The paper aims to identify the major phonetic features of Canadian English by addressing its differences from British and American English based on a historical, demographical, and regional and dialectal analysis. Canadian English is a cultural phenomenon that has evolved on the basis of British English and under the heavy influence of American English. As a distinctive variety of English, Canadian English possesses its phonetic uniqueness. And in the context of globalization, Canadian English will remain subject to Americanization.展开更多
文摘Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.
文摘Based on confusions between hidden Markov model (HMM) states, a state-restructuring method was proposed. In the method, HMM states were restructured by sharing Gaussian components with their related states, and the re-estimation to the increased-parameters, i.e., the inter-state weights, was derived under the expectation maximization (EM) framework. Experiments were performed on speaker-independent, large vocabulary, continuous Mandarin speech recognition. Experimental results showed that the state-restructured systems outperformed the baseline, and achieve significant improvement on recognition accuracy compared with the conventional parameter-increasing method. Such comparative results confirmed that the state-restructuring method was efficient.
文摘Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional features construct a nonlinear problem in the input space, and SVMs based on nonlinear mapping can solve it more effectively than other linear methods. Multi class classification based on SVMs with a soft decision function is constructed to classify the four emotion situations. Compared with principal component analysis (PCA) method and modified PCA method, SVMs perform the best result in multi class discrimination by using nonlinear kernel mapping.
基金The National Natural Science Foundation of China(No60472058)the Ph.D.Programs Foundation of Ministry of Educa-tion of China(No20050286001)Program for New Century Excellent Talents in University(NoNCET-04-0483)
文摘In order to improve the performance of general sidelobe canceller (GSC) based speech enhancement, a leakage constraints decision feedback generalized sidelobe canceller(LCDF-GSC) algorithm is proposed. The method adopts DF-GSC against signal mismatch, and introduces a leakage factor in the cost function to deal with the speech leakage problem which is caused by the part of the speech signal in the noise reference signal. Simulation results show that although the signal-to-noise ratio (SNR) of the speech signal through LCDF-GSC is slightly less than that of DF-GSC, the IS measurements show that the distortion of the former is less than that of the latter. MOS (mean opinion score) scores also indicate that the LCDF-GSC algorithm is better than DF- GSC and the Weiner filter algorithm,
基金The National Natural Science Foundation of China(No.61231002,61273266,61571106)the Foundation of the Department of Science and Technology of Guizhou Province(No.[2015]7637)
文摘In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm based on the combination of the emotional data field (EDF) and the ant colony search (ACS) strategy, called the EDF-ACS algorithm, is proposed. More specifically, the inter- relationship among the turn-based acoustic feature vectors of different labels are established by using the potential function in the EDF. To perform the spontaneous speech emotion recognition, the artificial colony is used to mimic the turn- based acoustic feature vectors. Then, the canonical ACS strategy is used to investigate the movement direction of each artificial ant in the EDF, which is regarded as the emotional label of the corresponding turn-based acoustic feature vector. The proposed EDF-ACS algorithm is evaluated on the continueous audio)'visual emotion challenge (AVEC) 2012 dataset, which contains the spontaneous, non-prototypical and unsegmented speech emotion data. The experimental results show that the proposed EDF-ACS algorithm outperforms the existing state-of-the-art algorithm in turn-based speech emotion recognition.
文摘In this paper, a new speech recognition method was proposed, which integrated a VQ distortion measure and a discrete HMM. The VQ HMM uses a VQ distortion measure at each state instead of a discrete output probability used by a discrete HMM. The VQ HMM is described, and its speech recognition performance is compared with the conventional HMMs through the experiments on speaker independent Chinese spoken digit recognition. The comparisons confirm that the new method over performed traditional HMMs.
基金The National Natural Science Foundation of China (No.61231002,61273266,51075068,60872073,60975017, 61003131)the Ph.D.Programs Foundation of the Ministry of Education of China(No.20110092130004)+1 种基金the Science Foundation for Young Talents in the Educational Committee of Anhui Province(No. 2010SQRL018)the 211 Project of Anhui University(No.2009QN027B)
文摘A machine learning based speech enhancement method is proposed to improve the intelligibility of whispered speech. A binary mask estimated by a two-class support vector machine (SVM) classifier is used to synthesize the enhanced whisper. A novel noise robust feature called Gammatone feature cosine coefficients (GFCCs) extracted by an auditory periphery model is derived and used for the binary mask estimation. The intelligibility performance of the proposed method is evaluated and compared with the traditional speech enhancement methods. Objective and subjective evaluation results indicate that the proposed method can effectively improve the intelligibility of whispered speech which is contaminated by noise. Compared with the power subtract algorithm and the log-MMSE algorithm, both of which do not improve the intelligibility in lower signal-to-noise ratio (SNR) environments, the proposed method has good performance in improving the intelligibility of noisy whisper. Additionally, the intelligibility of the enhanced whispered speech using the proposed method also outperforms that of the corresponding unprocessed noisy whispered speech.
文摘British English and American English are regarded as the two major varieties of English in the world, and Canadian English is often treated as a variation of American English. The paper aims to identify the major phonetic features of Canadian English by addressing its differences from British and American English based on a historical, demographical, and regional and dialectal analysis. Canadian English is a cultural phenomenon that has evolved on the basis of British English and under the heavy influence of American English. As a distinctive variety of English, Canadian English possesses its phonetic uniqueness. And in the context of globalization, Canadian English will remain subject to Americanization.