In atomic force microscopy(AFM), high-frequency components consisted in dynamic tip-sample interaction have been recently demonstrated as a promising technique for exploring more extensive material properties. Here we...In atomic force microscopy(AFM), high-frequency components consisted in dynamic tip-sample interaction have been recently demonstrated as a promising technique for exploring more extensive material properties. Here we present an exploratory study of high harmonic atomic force microscopy by force-spectroscopy and high harmonic imaging. Since these components are very weak compared to the fundamental response, we firstly designed a high harmonic cantilever by tuning the second order flexural resonance frequency to an integer 6 times of its fundamental mode(i.e. ω_2=6ω_1). Moreover, it is verified that high harmonic can discern extra features than topographies on different samples with amplitude/frequency modulation(AM/FM) dynamic AFM mode. In AM mode, the first resonance amplitude and 6 th harmonic amplitude were discussed. The 6 th harmonic is more sensitive than the first order response. In FM mode, it is noted that the decaying rate of the 6 th harmonic frequency is approximately 6 multiples to the slope of the fundamental frequency shift when the tip approaches to the surface of sample. This non-destructive method was also adopted to investigate the local interlayer coupling and intercalation in the two-dimensional graphene films tentatively.展开更多
基金supported by the Ministry of Science and Technology(MOST)of China(Grant No.2016YFA0200700)the National Natural Science Foundation of China(Grant Nos.21622304,61674045,11604063)+2 种基金Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS031)Osaka University's International Joint Research Promotion Program(Grant Nos.J171013014,J171013007)Distinguished Technical Talents Project and Youth Innovation Promotion Association,Chinese Academy of Sciences
文摘In atomic force microscopy(AFM), high-frequency components consisted in dynamic tip-sample interaction have been recently demonstrated as a promising technique for exploring more extensive material properties. Here we present an exploratory study of high harmonic atomic force microscopy by force-spectroscopy and high harmonic imaging. Since these components are very weak compared to the fundamental response, we firstly designed a high harmonic cantilever by tuning the second order flexural resonance frequency to an integer 6 times of its fundamental mode(i.e. ω_2=6ω_1). Moreover, it is verified that high harmonic can discern extra features than topographies on different samples with amplitude/frequency modulation(AM/FM) dynamic AFM mode. In AM mode, the first resonance amplitude and 6 th harmonic amplitude were discussed. The 6 th harmonic is more sensitive than the first order response. In FM mode, it is noted that the decaying rate of the 6 th harmonic frequency is approximately 6 multiples to the slope of the fundamental frequency shift when the tip approaches to the surface of sample. This non-destructive method was also adopted to investigate the local interlayer coupling and intercalation in the two-dimensional graphene films tentatively.