诗歌生成中的韵律规范和主题一致性一直以来都是自然语言生成领域的研究热点。为提升诗歌生成中的韵律规范,提出了基于Transformer结合韵律特征的诗歌生成模型(Transformer and prosodic features poetry generation model,TPPG)。根据...诗歌生成中的韵律规范和主题一致性一直以来都是自然语言生成领域的研究热点。为提升诗歌生成中的韵律规范,提出了基于Transformer结合韵律特征的诗歌生成模型(Transformer and prosodic features poetry generation model,TPPG)。根据韵律特征建立平仄韵律词库和平声韵脚词库,在Transformer编码器中引入平仄韵律编码,模型训练过程中可以捕获更多平仄韵律特征的信息,学习到多种诗歌韵律;最终根据建立的平声韵脚词库规范诗歌生成韵脚,运用极大后验概率对于候选的诗歌选择当前赋有韵律特征规范的最优诗句,整体提升诗歌规范性和流畅性。实验结果表明TPPG模型生成的诗歌能够很好地符合韵律,在人工评价和机器评价中均有提高。展开更多
目的为了探讨汉语为母语者在处理双耳分听模式下汉语听觉信号的脑区分布特征及偏侧化特点,本研究利用低通过滤的方法获取韵律信号,结合双耳分听技术,通过脑功能磁共振成像得到汉语语言和韵律双耳分听信号的神经处理模型。材料与方法从2...目的为了探讨汉语为母语者在处理双耳分听模式下汉语听觉信号的脑区分布特征及偏侧化特点,本研究利用低通过滤的方法获取韵律信号,结合双耳分听技术,通过脑功能磁共振成像得到汉语语言和韵律双耳分听信号的神经处理模型。材料与方法从2022年1月至5月在昆明医科大学第一附属医院共招募30位志愿者,年龄(25.36±0.88)岁,汉语为母语,强右利手者。汉语短句音频信号通过低通滤波器,只保留低频率语言韵律信号(<320 Hz),并得到两组双耳分听语音信号:左耳低通过滤右耳不过滤组(filtered in the left ear and unfiltered in the right ear,FL);右耳低通过滤左耳不过滤组(filtered in the right ear and unfiltered in the left ear,FR)。受试者依次聆听两组语音信号,同时进行两组组块设计的脑功能磁共振成像。使用SPM 12软件对得到的影像数据进行预处理后,进行组内单样本t检验、组间双样本t检验,以此观察两组语音信号激活脑区的分布和强度的共性、差异性。根据单样本t检验的统计结果,确定感兴趣区域,计算相应脑区的偏侧化指数,以获得大脑在处理双耳分听模式下的汉语语言和韵律信号时的脑区偏侧化特点。结果两组信号都激活了双侧颞中回、颞上回、额下回,左侧中央前回和右侧额中回(P<0.05,FDR校正);FL信号诱导左侧额中回血氧水平增高(P<0.05,FDR校正);FR信号还激活了双侧顶下小叶(P<0.05,FDR校正)。对两组语音信号进行双样本t检验后,发现FR与FL相比,右侧颞中回、颞上回具有明显差异(P<0.05,FDR校正);FL与FR相比无明显差异性脑区。对两组语音信号进行偏侧化指数计算后发现,在大脑半球水平上两组语音信号无明显的偏侧化表现。两组信号的额中回具有右侧优势,中央前回都表现出左侧化趋势;顶下小叶在FR刺激下呈现左侧化趋势。结论大脑处理两种语音信号时具有一个由双侧颞中回、颞上回、额下回和右侧额中回组成的基础语音处理模型。双耳分听信号FR除激活了基础语音加工脑区外,相较于FL招募了更多的听觉相关脑区参与言语感知和认知控制;FL则可以降低右侧颞中回、颞上回的音韵处理负荷,可能是一种符合左、右两侧半球处理语言、韵律优势的信号。展开更多
文摘诗歌生成中的韵律规范和主题一致性一直以来都是自然语言生成领域的研究热点。为提升诗歌生成中的韵律规范,提出了基于Transformer结合韵律特征的诗歌生成模型(Transformer and prosodic features poetry generation model,TPPG)。根据韵律特征建立平仄韵律词库和平声韵脚词库,在Transformer编码器中引入平仄韵律编码,模型训练过程中可以捕获更多平仄韵律特征的信息,学习到多种诗歌韵律;最终根据建立的平声韵脚词库规范诗歌生成韵脚,运用极大后验概率对于候选的诗歌选择当前赋有韵律特征规范的最优诗句,整体提升诗歌规范性和流畅性。实验结果表明TPPG模型生成的诗歌能够很好地符合韵律,在人工评价和机器评价中均有提高。
文摘目的为了探讨汉语为母语者在处理双耳分听模式下汉语听觉信号的脑区分布特征及偏侧化特点,本研究利用低通过滤的方法获取韵律信号,结合双耳分听技术,通过脑功能磁共振成像得到汉语语言和韵律双耳分听信号的神经处理模型。材料与方法从2022年1月至5月在昆明医科大学第一附属医院共招募30位志愿者,年龄(25.36±0.88)岁,汉语为母语,强右利手者。汉语短句音频信号通过低通滤波器,只保留低频率语言韵律信号(<320 Hz),并得到两组双耳分听语音信号:左耳低通过滤右耳不过滤组(filtered in the left ear and unfiltered in the right ear,FL);右耳低通过滤左耳不过滤组(filtered in the right ear and unfiltered in the left ear,FR)。受试者依次聆听两组语音信号,同时进行两组组块设计的脑功能磁共振成像。使用SPM 12软件对得到的影像数据进行预处理后,进行组内单样本t检验、组间双样本t检验,以此观察两组语音信号激活脑区的分布和强度的共性、差异性。根据单样本t检验的统计结果,确定感兴趣区域,计算相应脑区的偏侧化指数,以获得大脑在处理双耳分听模式下的汉语语言和韵律信号时的脑区偏侧化特点。结果两组信号都激活了双侧颞中回、颞上回、额下回,左侧中央前回和右侧额中回(P<0.05,FDR校正);FL信号诱导左侧额中回血氧水平增高(P<0.05,FDR校正);FR信号还激活了双侧顶下小叶(P<0.05,FDR校正)。对两组语音信号进行双样本t检验后,发现FR与FL相比,右侧颞中回、颞上回具有明显差异(P<0.05,FDR校正);FL与FR相比无明显差异性脑区。对两组语音信号进行偏侧化指数计算后发现,在大脑半球水平上两组语音信号无明显的偏侧化表现。两组信号的额中回具有右侧优势,中央前回都表现出左侧化趋势;顶下小叶在FR刺激下呈现左侧化趋势。结论大脑处理两种语音信号时具有一个由双侧颞中回、颞上回、额下回和右侧额中回组成的基础语音处理模型。双耳分听信号FR除激活了基础语音加工脑区外,相较于FL招募了更多的听觉相关脑区参与言语感知和认知控制;FL则可以降低右侧颞中回、颞上回的音韵处理负荷,可能是一种符合左、右两侧半球处理语言、韵律优势的信号。