Extant research on Paleozoic mudstone is well developed in the Tarim Basin, while the research on Carboniferous mudstone is relatively weak. Through systematic study of lithology, geochemical characteristics,reservoir...Extant research on Paleozoic mudstone is well developed in the Tarim Basin, while the research on Carboniferous mudstone is relatively weak. Through systematic study of lithology, geochemical characteristics,reservoir characteristics and gas–bearing properties of Carboniferous mudstone in the Tarim Basin, this study aims to provide a geological basis for the Paleozoic shale gas exploration and development, favorable zone optimization, and resource potential evaluation in the Tarim Basin. The results show that the sedimentary environments of organic-rich mudstone in the study area were mainly basin facies and slope facies. Lithology is dominated by black carbonaceous mudstone, followed by calcareous mudstone, siliceous mudstone, and siliceous rocks. Mudstone is mainly developed in the Kalashayi Formation,which is located in the Bachu and Markit slope belt, with the cumulative thickness of 30–200 m. The organic carbon content is commonly more than 0.4%, and the organic matter types are type II and type III. Thermal evolution degree is widely distributed from a low mature to over mature stage, and different tectonic units have a greater difference. The contents of quartz plus feldspar are between 12% and 82.5%, with an average of 45.8%. Thecontent distribution of clay mineral is from 12% to 57%,with an average of 38.2%. Carbonate minerals(mainly siderite) content is below 50%. The brittle mineral content of the mudstone is approximately 65%, with a strong compressibility, and the mudstone has the material basis of forming crack and natural fracture. Microscopic pores in micro–nanometer level are well developed in the mudstone, including micro bedding joint, microcrack,interbedded pores of clay mineral, nanoscale intragranular or edge pores in the massive organic matter, bioclastic micropores, and mineral dissolution pores, etc. According to the standards provided by the Ministry of Land and Resources in China, the Kalashayi Formation in Bamai Area is a favorable area for shale gas development.展开更多
文摘Extant research on Paleozoic mudstone is well developed in the Tarim Basin, while the research on Carboniferous mudstone is relatively weak. Through systematic study of lithology, geochemical characteristics,reservoir characteristics and gas–bearing properties of Carboniferous mudstone in the Tarim Basin, this study aims to provide a geological basis for the Paleozoic shale gas exploration and development, favorable zone optimization, and resource potential evaluation in the Tarim Basin. The results show that the sedimentary environments of organic-rich mudstone in the study area were mainly basin facies and slope facies. Lithology is dominated by black carbonaceous mudstone, followed by calcareous mudstone, siliceous mudstone, and siliceous rocks. Mudstone is mainly developed in the Kalashayi Formation,which is located in the Bachu and Markit slope belt, with the cumulative thickness of 30–200 m. The organic carbon content is commonly more than 0.4%, and the organic matter types are type II and type III. Thermal evolution degree is widely distributed from a low mature to over mature stage, and different tectonic units have a greater difference. The contents of quartz plus feldspar are between 12% and 82.5%, with an average of 45.8%. Thecontent distribution of clay mineral is from 12% to 57%,with an average of 38.2%. Carbonate minerals(mainly siderite) content is below 50%. The brittle mineral content of the mudstone is approximately 65%, with a strong compressibility, and the mudstone has the material basis of forming crack and natural fracture. Microscopic pores in micro–nanometer level are well developed in the mudstone, including micro bedding joint, microcrack,interbedded pores of clay mineral, nanoscale intragranular or edge pores in the massive organic matter, bioclastic micropores, and mineral dissolution pores, etc. According to the standards provided by the Ministry of Land and Resources in China, the Kalashayi Formation in Bamai Area is a favorable area for shale gas development.