In this paper a new mechanica1 medel indicating the mechanical behaviour of main floor in longwall mining is proposed. In the medel the unfractured rnain floor is considered as an elasto plastic plate, and the combina...In this paper a new mechanica1 medel indicating the mechanical behaviour of main floor in longwall mining is proposed. In the medel the unfractured rnain floor is considered as an elasto plastic plate, and the combination of fractured blocks as a voussoir beam. Using the plastic hmit theory of plates, th limit load acting on rnain floor and the position of its largest deformation are gotten. The stability conditions for the key blocks of the voussoir beam are analysed by "S-R" stability theory. The results of the theoretical analysis are important for the study on the water inrush from seam floor.展开更多
For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body...For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body's compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs(II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.展开更多
t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control...t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control and manage hard roof. In order to make hard roof fracture in a directional way, a hydraulic fracture field test has been conducted in the third panel district of Tashan Coal Mine in Datong. First, two hydraulic fracturing drilling holes and four observing drilling holes were arranged in the roof, followed by a wedge-shaped ring slot in each hydraulic fracturing drilling hole. The hydraulic fracturing holes were then sealed and, hydraulic fracturing was conducted. The results show that the hard roof is fractured directionally by the hydraulic fracturing function of the two fracturing drilling holes; the sudden drop, or the overall downward trend of hydraulic pressure from hydraulic monitoring is the proof that the rock in the hard roof has been fractured. The required hydraulic pressure to fracture the hard roof in Tashan coal mine, consisting of carboniferous sandstone layer, is 50.09 MPa, and the fracturing radius of a single drilling hole is not less than 10.5 m. The wedge-shaped ring slot made in the bottom of the hydraulic fracturing drilling hole plays a guiding role for crack propagation. After the hydraulic fracturing drill hole is cracked, the propagation of the resulting hydraulic crack, affected mainly by the regional stress field, will turn to other directions.展开更多
Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causin...Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.展开更多
文摘In this paper a new mechanica1 medel indicating the mechanical behaviour of main floor in longwall mining is proposed. In the medel the unfractured rnain floor is considered as an elasto plastic plate, and the combination of fractured blocks as a voussoir beam. Using the plastic hmit theory of plates, th limit load acting on rnain floor and the position of its largest deformation are gotten. The stability conditions for the key blocks of the voussoir beam are analysed by "S-R" stability theory. The results of the theoretical analysis are important for the study on the water inrush from seam floor.
基金Project(2014ZDPY02) supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by Qinglan Plan of Jiangsu Province,ChinaProject(SKLCRSM12X01) supported by State Key Laboratory of Coal Resources and Safe Mining(China University of Mining & Technology)
文摘For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body's compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs(II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.
基金Supported by the National Natural Science Foundation of China (51274194, 51004104) the Program for New Century Excellent Talents in University (NCET- 12-0958)
文摘t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control and manage hard roof. In order to make hard roof fracture in a directional way, a hydraulic fracture field test has been conducted in the third panel district of Tashan Coal Mine in Datong. First, two hydraulic fracturing drilling holes and four observing drilling holes were arranged in the roof, followed by a wedge-shaped ring slot in each hydraulic fracturing drilling hole. The hydraulic fracturing holes were then sealed and, hydraulic fracturing was conducted. The results show that the hard roof is fractured directionally by the hydraulic fracturing function of the two fracturing drilling holes; the sudden drop, or the overall downward trend of hydraulic pressure from hydraulic monitoring is the proof that the rock in the hard roof has been fractured. The required hydraulic pressure to fracture the hard roof in Tashan coal mine, consisting of carboniferous sandstone layer, is 50.09 MPa, and the fracturing radius of a single drilling hole is not less than 10.5 m. The wedge-shaped ring slot made in the bottom of the hydraulic fracturing drilling hole plays a guiding role for crack propagation. After the hydraulic fracturing drill hole is cracked, the propagation of the resulting hydraulic crack, affected mainly by the regional stress field, will turn to other directions.
基金sponsored by the National Natural Science Foundation of China(No.50874021 )the Program for New Century Excellent Talents in University(No.NCET-08-0833)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0656) of the Ministry of Education of China.
文摘Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.