To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was...To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.展开更多
Focusing on the stability of surrounding rock around the roadway driving along next goaf with a narrow coal pillar, a mechanics model of the triangle block structure of main roof above the roadway is established, and ...Focusing on the stability of surrounding rock around the roadway driving along next goaf with a narrow coal pillar, a mechanics model of the triangle block structure of main roof above the roadway is established, and the sliding stability coefficient K 1 and the rotation stability coefficient K 2 are proposed to describe the stability of the triangle block structure quantitatively. The structure can keep a self stability before and after the roadway excavation, at the stage of mining induced effect, the stability of the structure is lowered, and the structure may become instability with decreasing the coal strength, increasing the mining height of working face and the mining depth.展开更多
Based on the elastic plate theory, a mechanical model of thin plate for the first caving of overlying roof rock in steep mining face was established. The analytical solution of the deflection and stress distribution o...Based on the elastic plate theory, a mechanical model of thin plate for the first caving of overlying roof rock in steep mining face was established. The analytical solution of the deflection and stress distribution of roof rocks was obtained. According to the specific geological conditions of the 5-103 panel in Shanxi,the failure of roof rocks and the influence of seam dip on it during the exploitation were theoretically investigated. Meanwhile, the first caving characteristics of the overlying rock in the steep coal seam were investigated based on its stress contour. The results show that the dip angle has a distinct influence on the caving interval and the first caving interval for the 5-103 panel is 37 m in theory. Finally, a systematic monitoring on the behavior of rock pressures was conducted. The measured results agree well with the theoretical prediction, which provides a good reference for practical steep coal seam mining.展开更多
对于20Mn Mo Nb管板与疏冷段顶板R处的角焊缝,焊前局部预热容易产生冷裂纹,进而对高压加热器性能产生很大影响。本文采用预先在管板待焊处钻孔,并对孔进行碳钢堆焊,在机加管板后,形成了新的焊接结构,实现了管板与疏冷段顶板R处不预热的...对于20Mn Mo Nb管板与疏冷段顶板R处的角焊缝,焊前局部预热容易产生冷裂纹,进而对高压加热器性能产生很大影响。本文采用预先在管板待焊处钻孔,并对孔进行碳钢堆焊,在机加管板后,形成了新的焊接结构,实现了管板与疏冷段顶板R处不预热的焊接并成功运用在国产首台1000MW单列超超临界高加中。展开更多
基金the Joint Funds of the National Natural Science Foundation of China (No. U1361209)the National Basic Research Program of China (No. 2013CB227903)
文摘To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.
文摘Focusing on the stability of surrounding rock around the roadway driving along next goaf with a narrow coal pillar, a mechanics model of the triangle block structure of main roof above the roadway is established, and the sliding stability coefficient K 1 and the rotation stability coefficient K 2 are proposed to describe the stability of the triangle block structure quantitatively. The structure can keep a self stability before and after the roadway excavation, at the stage of mining induced effect, the stability of the structure is lowered, and the structure may become instability with decreasing the coal strength, increasing the mining height of working face and the mining depth.
基金financially supported by the National Natural Science Foundation of China (Nos. 51374197 and 50774078)the National Basic Research Program of China (No. 2015CB251600)+1 种基金the University Discipline Construction Project of Jiangsu Province, Blue Project of Jiangsu Provincethe Open Foundation of State Key Laboratory of Coal Resources and Sage Mining (No. SKLCRSM12X06)
文摘Based on the elastic plate theory, a mechanical model of thin plate for the first caving of overlying roof rock in steep mining face was established. The analytical solution of the deflection and stress distribution of roof rocks was obtained. According to the specific geological conditions of the 5-103 panel in Shanxi,the failure of roof rocks and the influence of seam dip on it during the exploitation were theoretically investigated. Meanwhile, the first caving characteristics of the overlying rock in the steep coal seam were investigated based on its stress contour. The results show that the dip angle has a distinct influence on the caving interval and the first caving interval for the 5-103 panel is 37 m in theory. Finally, a systematic monitoring on the behavior of rock pressures was conducted. The measured results agree well with the theoretical prediction, which provides a good reference for practical steep coal seam mining.