We prove that the regularity of a vertex operator superalgebra can be reduced to the semisimplicity of the category of its weak modules.Moreover,the rationality can be replaced by requiring that each 1/2Z+-graded modu...We prove that the regularity of a vertex operator superalgebra can be reduced to the semisimplicity of the category of its weak modules.Moreover,the rationality can be replaced by requiring that each 1/2Z+-graded module is a direct sum of irreducible weak modules.展开更多
In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its...In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its properties, discuss the connections between bimodule A_(g,n)(M) and intertwining operators. Especially, bimodule A _(g,n)-1T(M) is a natural quotient of A_(g,n)(M) and there is a linear isomorphism between the space IM^k M Mjof intertwining operators and the space of homomorphisms HomA_(g,n)(V)(A_(g,n)(M) A_(g,n)(V)M^j(s), M^k(t)) for s, t ≤ n, M^j, M^k are g-twisted V modules, if V is g-rational.展开更多
基金Supported by the Projects of National Nature Science Foundation of China:Mathematical Tianyuan Foundation(11126156)the Collaborative Project of Theoretical Physics(11047030)
基金supported by National Science Foundation for Postdoctoral Science of China(Grant No.2013M540709)
文摘We prove that the regularity of a vertex operator superalgebra can be reduced to the semisimplicity of the category of its weak modules.Moreover,the rationality can be replaced by requiring that each 1/2Z+-graded module is a direct sum of irreducible weak modules.
基金supported by National Natural Science Foundation of China(Grant Nos.11101269 and 11431010)
文摘In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its properties, discuss the connections between bimodule A_(g,n)(M) and intertwining operators. Especially, bimodule A _(g,n)-1T(M) is a natural quotient of A_(g,n)(M) and there is a linear isomorphism between the space IM^k M Mjof intertwining operators and the space of homomorphisms HomA_(g,n)(V)(A_(g,n)(M) A_(g,n)(V)M^j(s), M^k(t)) for s, t ≤ n, M^j, M^k are g-twisted V modules, if V is g-rational.