证明了体积增长不低于5次多项式的拟顶点可迁图上的简单随机游走几乎处处有无穷多个切割时,从而有无穷多个切割点.该结论在所论情形下肯定了Benjamini,Gurel-Gurevich和Schramm在文[2011,Cutpoints and resistance of random walk paths...证明了体积增长不低于5次多项式的拟顶点可迁图上的简单随机游走几乎处处有无穷多个切割时,从而有无穷多个切割点.该结论在所论情形下肯定了Benjamini,Gurel-Gurevich和Schramm在文[2011,Cutpoints and resistance of random walk paths,Ann.Probab.,39(3):1122-1136]中提出的猜想:顶点可迁图上暂留简单随机游走几乎处处有无穷多个切割点.展开更多
This paper discusses a class of vertex-transitive digraphs.It is shown that these digraphs are rational and can be decomposed into Hamiltonian dicycles.
文摘证明了体积增长不低于5次多项式的拟顶点可迁图上的简单随机游走几乎处处有无穷多个切割时,从而有无穷多个切割点.该结论在所论情形下肯定了Benjamini,Gurel-Gurevich和Schramm在文[2011,Cutpoints and resistance of random walk paths,Ann.Probab.,39(3):1122-1136]中提出的猜想:顶点可迁图上暂留简单随机游走几乎处处有无穷多个切割点.
文摘This paper discusses a class of vertex-transitive digraphs.It is shown that these digraphs are rational and can be decomposed into Hamiltonian dicycles.