期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
分子连接性指数的新定义 被引量:14
1
作者 杨锋 王振东 +2 位作者 周培疆 罗明道 屈松生 《化学学报》 SCIE CAS CSCD 北大核心 2003年第4期481-486,共6页
在原子价电子层结构的基础上提出了原子结构半径和键参数的概念 ,并将其引入分子连接性指数中 ,重新定义了顶点原子的连接性值 ,设计了适用于有机体系和无机体系的系列连接性指数 .新的分子连接性指数物理意义明确 ,方法简单 ,不需要任... 在原子价电子层结构的基础上提出了原子结构半径和键参数的概念 ,并将其引入分子连接性指数中 ,重新定义了顶点原子的连接性值 ,设计了适用于有机体系和无机体系的系列连接性指数 .新的分子连接性指数物理意义明确 ,方法简单 ,不需要任何实验数据 .实际应用表明 ,新分子连接性指数不仅保留了原分子连接性指数的优点 ,而且将分子连接性指数的应用范围扩大到了含多种杂原子的有机体系和含过渡元素的无机体系 . 展开更多
关键词 分子连接性指数 原子价电子层结构 原子结构 半径 键参数 顶点连接性指数
下载PDF
顶点覆盖变体问题的确定参数可解算法研究
2
作者 洪翔宇 蔡晟 《计算机工程与科学》 CSCD 2008年第12期79-81,84,共4页
参数复杂性作为算法研究的一个重要分支,近十年来在国际上受到了广泛的关注,确定参数可解算法是参数复杂性研究的一类重要问题,因此被广泛研究。本文主要研究了顶点覆盖问题的两个变体问题:一个是连接的顶点覆盖问题,二是含权的树型顶... 参数复杂性作为算法研究的一个重要分支,近十年来在国际上受到了广泛的关注,确定参数可解算法是参数复杂性研究的一类重要问题,因此被广泛研究。本文主要研究了顶点覆盖问题的两个变体问题:一个是连接的顶点覆盖问题,二是含权的树型顶点覆盖问题。这两个问题都是对原始的顶点覆盖问题加入了一些限制的变体问题。本文给出了这两个问题的确定参数可解算法,并且是目前的最好结果。 展开更多
关键词 参数复杂性 确定参数可解算法 顶点覆盖 连接顶点覆盖
下载PDF
基于公告牌云团的森林场景快速渲染方法
3
作者 金益 方立刚 《科学技术与工程》 北大核心 2012年第33期8904-8908,共5页
数字化虚拟场景中对森林场景的实时渲染是计算机图形学一项重要的内容。渲染方法从森林场景的搭建入手,在研究相关主流方法的基础上,分析了原始公告牌云团算法的优势及裂缝与连通性的问题,并在阐述过程中对原有的简化算法加以改进。提... 数字化虚拟场景中对森林场景的实时渲染是计算机图形学一项重要的内容。渲染方法从森林场景的搭建入手,在研究相关主流方法的基础上,分析了原始公告牌云团算法的优势及裂缝与连通性的问题,并在阐述过程中对原有的简化算法加以改进。提出顶点连接、双纸板模式和平面预调整的方法,避免上述问题以实现上万株树木的高质量渲染。最后的实验数据表明方法的解决方案在保证快速渲染速度的同时也获得了场景在视觉上的逼真性。 展开更多
关键词 森林场景 公告牌云团 顶点连接 双纸板模式
下载PDF
Measurement of Apex Offsets for Fiber Connector End Faces 被引量:1
4
作者 XU Yong-xiang ZHU Ri-hong CHEN Lei 《Semiconductor Photonics and Technology》 CAS 2006年第4期270-275,共6页
As one of the most important geometric parameters for a PC-type fiber connector end face, apex offset can contribute to high insertion loss and high back-reflection reading. A novel measurement method for the paramete... As one of the most important geometric parameters for a PC-type fiber connector end face, apex offset can contribute to high insertion loss and high back-reflection reading. A novel measurement method for the parameter, connector rotating-π method, is proposed. With the method, the apex offset of a common connector end face is measured. The result is compared with that measured by a Norland 3000 fiber connector end face interferometer. It is found that the difference between two results is 1.8μm. Meantime, the influences of relevant error resources on apex offset measurement under rotating-π method and apex-core method are respectively analyzed, and two error equations are derived. The analytical result shows that, compared with apex-core method, if two additional sub-tilts of axis within and in the direction perpendicular to principal plane caused by its rotation are not bigger than the original axis tilt angle, the max. measurement error will then be reduced by at least 22.5% with rotating-π method. The practicability of the method is confirmed by the experiments. 展开更多
关键词 Apex offset Fiber connector Phase shifting interferometry Algorithm
下载PDF
Super-connected and Hyper-connected Cubic Bi-Cayley Graphs
5
作者 CAO Ling MENG Ji-xiang 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第1期53-57,共5页
Let G be a finite group and let S(possibly, contains the identity element) be a subset of G. The Bi-Cayley graph BC(G, S) is a bipartite graph with vertex set G × { 0,1} and edge set {(g, 0) (sg,1) : g∈... Let G be a finite group and let S(possibly, contains the identity element) be a subset of G. The Bi-Cayley graph BC(G, S) is a bipartite graph with vertex set G × { 0,1} and edge set {(g, 0) (sg,1) : g∈ G, s ∈ S}. A graph is said to be super-connected ff every minimum vertex cut isolates a vertex. A graph is said to be hyper-connected if every minimum vertex cut creates two components, one of which is an isolated vertex. In this paper, super-connected and/or hyper-connected cubic Bi-Cayley graphs are characterized. 展开更多
关键词 super-connected hyper-connected CUBIC Bi-Cayley graphs
下载PDF
非负实矩阵与它的相伴有向图
6
作者 王继成 《绥化学院学报》 1997年第4期184-185,共2页
关键词 非负实矩阵 相伴有向图 本原性 不可约矩阵 当且仅当 连接顶点 矩阵A 连通有向图 不可约性 充分必要条件
下载PDF
Connectedness of curve complex of surface
7
作者 SUN DongQi LEI FengChun LI FengLing 《Science China Mathematics》 SCIE 2014年第4期847-854,共8页
For a closed orientable surface Sg of genus not smaller than 2,C(Sg) is the curve complex on S g whose vertices consist of the isotopy classes of nontrivial circles on Sg. It has been showed that any two vertices in C... For a closed orientable surface Sg of genus not smaller than 2,C(Sg) is the curve complex on S g whose vertices consist of the isotopy classes of nontrivial circles on Sg. It has been showed that any two vertices in C(Sg) can be connected by an edge path,and C(Sg) has an infinite diameter. We show that for 0 ≤i≤3g-5,two i-simplices can be connected by an(i +1)-path in C(Sg),and the diameter of C(Sg) under such a distance is infinite. 展开更多
关键词 curve complex connectedness i-distance SURFACE
原文传递
Graphs with vertex rainbow connection number two
8
作者 LU ZaiPing MA YingBin 《Science China Mathematics》 SCIE CSCD 2015年第8期1803-1810,共8页
An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors... An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. A vertex colored graph G is vertex rainbow connected if any two vertices are connected by a path whose internal vertices have distinct colors. The vertex rainbow connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G vertex rainbow connected. In 2011, Kemnitz and Schiermeyer considered graphs with rc(G) = 2.We investigate graphs with rvc(G) = 2. First, we prove that rvc(G) 2 if |E(G)|≥n-22 + 2, and the bound is sharp. Denote by s(n, 2) the minimum number such that, for each graph G of order n, we have rvc(G) 2provided |E(G)|≥s(n, 2). It is proved that s(n, 2) = n-22 + 2. Next, we characterize the vertex rainbow connection numbers of graphs G with |V(G)| = n, diam(G)≥3 and clique number ω(G) = n- s for 1≤s≤4. 展开更多
关键词 vertex-coloring vertex rainbow connection number clique number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部