The change rules of displacement field characteristics of coal seam and tunners surrounding rock were obtained by means of numerical simulation-FLAC^3D and site observation, and according to engineering geology and ex...The change rules of displacement field characteristics of coal seam and tunners surrounding rock were obtained by means of numerical simulation-FLAC^3D and site observation, and according to engineering geology and exploitation technology of 1151 (3) fully mechanized top coal caving (FMTC) face in Xieqiao colliery. The research's results show that the top coal displacement on the top of FMTC face is apparently larger than those of the middle and the bottom, the top coal begins to move in the front of the face's wall, and the sub-level top coal-rock moves ahead of the low-level top coal-rock, the vertical displacement of top coal-rock increases gradually as the decreasing of distance to face Top coal and overlying strata in vertical direction are always in compressed state in the front of face, then the top coal begins to separate from the overlying strata at the upside of face. The support loading at face is mainly the deformation pressure due to top coal and main roof's movement, and it is not suitable for the FMTC face with traditional support design. Surrounding rock movement of the face is of near-field effect, the surrounding rock deformation is acute greatly near to the face, the ideas of supporting design for the tailentry and headentry should be changed from loading control to deformation control.展开更多
基金National Natural Science Foundation of China(50674003)National Basic Research Program(973)
文摘The change rules of displacement field characteristics of coal seam and tunners surrounding rock were obtained by means of numerical simulation-FLAC^3D and site observation, and according to engineering geology and exploitation technology of 1151 (3) fully mechanized top coal caving (FMTC) face in Xieqiao colliery. The research's results show that the top coal displacement on the top of FMTC face is apparently larger than those of the middle and the bottom, the top coal begins to move in the front of the face's wall, and the sub-level top coal-rock moves ahead of the low-level top coal-rock, the vertical displacement of top coal-rock increases gradually as the decreasing of distance to face Top coal and overlying strata in vertical direction are always in compressed state in the front of face, then the top coal begins to separate from the overlying strata at the upside of face. The support loading at face is mainly the deformation pressure due to top coal and main roof's movement, and it is not suitable for the FMTC face with traditional support design. Surrounding rock movement of the face is of near-field effect, the surrounding rock deformation is acute greatly near to the face, the ideas of supporting design for the tailentry and headentry should be changed from loading control to deformation control.