The new CDF II measurement of W-boson mass shows a 7σdeviation from the standard model(SM)prediction,while the recent FNAL measurement of the muon g-2 shows a 4.2σdeviation(combined with the BNL result)from the SM.B...The new CDF II measurement of W-boson mass shows a 7σdeviation from the standard model(SM)prediction,while the recent FNAL measurement of the muon g-2 shows a 4.2σdeviation(combined with the BNL result)from the SM.Both of them strongly indicate new physics beyond the SM.In this work,we study the implication of both measurements on low energy supersymmetry.With an extensive exploration of the parameter space of the minimal supersymmetric standard model(MSSM),we find that in the parameter space allowed by current experimental constraints from colliders and dark matter detections,the MSSM can simultaneously explain both measurements on the edge of 2σlevel,taking theoretical uncertainties into consideration.The favored parameter space,characterized by a compressed spectrum between bino,wino and stau,with the stop being around 1 TeV,may be covered in the near future LHC searches.展开更多
基金supported by the National Natural Science Foundation of China(11821505,12075300,and 12105248)the Key Research Project of Henan Education Department for Colleges and Universities(21A140025)+4 种基金Peng-Huan-Wu Theoretical Physics Innovation Center(12047503)the CAS Center for Excellence in Particle Physics(CCEPP)the CAS Key Research Program of Frontier Scienceshe Key R&D Program of Ministry of Science and Technology of the People’s Republic of China(2017YFA0402204)the Key Research Program of the Chinese Academy of Sciences(XDPB15)。
文摘The new CDF II measurement of W-boson mass shows a 7σdeviation from the standard model(SM)prediction,while the recent FNAL measurement of the muon g-2 shows a 4.2σdeviation(combined with the BNL result)from the SM.Both of them strongly indicate new physics beyond the SM.In this work,we study the implication of both measurements on low energy supersymmetry.With an extensive exploration of the parameter space of the minimal supersymmetric standard model(MSSM),we find that in the parameter space allowed by current experimental constraints from colliders and dark matter detections,the MSSM can simultaneously explain both measurements on the edge of 2σlevel,taking theoretical uncertainties into consideration.The favored parameter space,characterized by a compressed spectrum between bino,wino and stau,with the stop being around 1 TeV,may be covered in the near future LHC searches.