期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于顶芽智能识别的棉花化学打顶系统研究 被引量:1
1
作者 韩鑫 韩金鸽 +3 位作者 陈允琳 兰玉彬 李建坤 崔立华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期145-152,共8页
设计了基于顶芽智能识别的棉花化学打顶系统,为实现精准作业,合理高效使用棉花化学打顶药剂,以减少因化学打顶剂的过度使用造成的环境污染。该系统主要由棉花顶芽识别系统、控制系统和喷施系统组成。采用YOLO v5s算法构建棉花顶芽识别... 设计了基于顶芽智能识别的棉花化学打顶系统,为实现精准作业,合理高效使用棉花化学打顶药剂,以减少因化学打顶剂的过度使用造成的环境污染。该系统主要由棉花顶芽识别系统、控制系统和喷施系统组成。采用YOLO v5s算法构建棉花顶芽识别模型。控制系统采用STM32F407单片机,负责接收识别系统的信号,并对各个棉花打顶剂管道进行控制。同时,显示界面能够实时显示机具行驶速度、药液流量、打顶剂液位等参数。试验结果表明,在田间全天光照试验中,上午和下午时间段识别效果最优;在速度0.4 m/s下,平均识别率约为94%;信号发送区间为100 mm时,成功向下位机发送信号的成功率达到92%;田间对靶喷施试验表明,有效喷施率为94%,满足作业要求。 展开更多
关键词 棉花 化学打顶 控制系统 YOLO v5s 顶芽识别
下载PDF
融合动态机制的改进型Faster R-CNN识别田间棉花顶芽 被引量:14
2
作者 陈柯屹 朱龙付 +5 位作者 宋鹏 田晓敏 黄成龙 聂新辉 肖爱玲 何良荣 《农业工程学报》 EI CAS CSCD 北大核心 2021年第16期161-168,共8页
针对田间密植环境棉花精准打顶时,棉花顶芽因其小体积特性所带来识别困难问题,该研究提出一种改进型快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)目标检测算法实现大田环境棉花顶芽识别。以Faster ... 针对田间密植环境棉花精准打顶时,棉花顶芽因其小体积特性所带来识别困难问题,该研究提出一种改进型快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)目标检测算法实现大田环境棉花顶芽识别。以Faster R-CNN为基础框架,使用RegNetX-6.4GF作为主干网络,以提高图像特征获取性能。将特征金字塔网络(Feature Pyramid Network,FPN)和导向锚框定位(Guided Anchoring,GA)机制相融合,实现锚框(Anchor)动态自适应生成。通过融合动态区域卷积神经网络(Dynamic Region Convolutional Neural Networks,Dynamic R-CNN),实现训练阶段检测模型自适应候选区域(Proposal)分布的动态变化。最后在目标候选区域(Region of Interest,ROI)中引入目标候选区域提取器(Generic ROI Extractor,GROIE)提高图像特征融合能力。采集自然环境下7种不同棉花总计4819张图片,建立微软常见物体图像识别库2017(Microsoft Common Objects in Context 2017,MS COCO 2017)格式的棉花顶芽图片数据集进行试验。结果表明,该研究提出方法的平均准确率均值(Mean Average Precision,MAP)为98.1%,模型的处理帧速(Frames Per Second,FPS)为10.3帧/s。其MAP在交并比(Intersection Over Union,IOU)为0.5时较Faster R-CNN、RetinaNet、Cascade R-CNN和RepPoints网络分别提高7.3%、78.9%、10.1%和8.3%。该研究算法在田间对于棉花顶芽识别具有较高的鲁棒性和精确度,为棉花精准打顶作业奠定基础。 展开更多
关键词 深度学习 算法 棉花 机制融合 动态适应 顶芽识别 Faster R-CNN
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部