Dust generated from bolt hole drilling in roof bolting operation could have high quartz content. As a dust control measure, vacuum drilling is employed on most of the roof bolters in US underground mines. However, fin...Dust generated from bolt hole drilling in roof bolting operation could have high quartz content. As a dust control measure, vacuum drilling is employed on most of the roof bolters in US underground mines. However, fine rock partic- ulates from drilling could escape from the dust collection system and become airborne under some circumstances causing the roof bolter operators expose to quartz-rich respirable dust. A previous research shows that drilling can be controlled through properly selected penetration and rotational rates to reduce the specific energy of drilling. Less specific energy means less energy is wasted on generating noise, heat and over-breakage of rock. It implies that proper control of drilling has a great potential to generate significantly less fine rock dust during drilling. The drilling experiments have been conducted to study the effect of controlling drilling on reducing respirable dust. The preliminary results show that the size distributions of respirable dust were different when controlling drilling in different bite depths. This paper presents the findings from laboratory experimental studies.展开更多
In underground mining, machine design is predominantly dictated by mine conditions and individual customer desires. In partnership with Foresight Energy, J. H. Fletcher & Company was tasked to design and manufactu...In underground mining, machine design is predominantly dictated by mine conditions and individual customer desires. In partnership with Foresight Energy, J. H. Fletcher & Company was tasked to design and manufacture a new roof bolting machine with six independent drilling apparatus on board capable of drilling and bolting the roof and ribs with material handling. The objective was to produce a machine capable of drilling and installing six bolts simultaneously with a limited number of operators. The goal of the mine is to decrease the time to bolt a cut to improve the safety level of the current roof bolting method, improve efficiency and to improve the bottom line cost of entry development. The customer wanted four drills at the front of the machine dedicated to installing roof bolts and then another two drills behind them dedicated to rib bolts. This dictated the requirement of latched controls, which would allow the operator to start drilling one hole and then latch the controls to be able to move on to the next.The result of the design is a machine with a single platform and six independent masts with drillheads:four masts strictly for drilling and installing roof bolts on the front of the platform and two masts on the back of the platform for rib bolts. The controls at each operator's station include a latch control for drilling. The six-head roof bolter allows fewer operators to drill and install roof and rib bolts, which in turn lowers the miners' roof exposure per cut. This design reduces the operator's exposure from the inherent pinch points and rotary hazards once he has engaged the latch drilling. Therefore, the machine will help to decrease the time to bolt a cut, improving productivity while enhancing the ability to operate the machine safely.展开更多
文摘Dust generated from bolt hole drilling in roof bolting operation could have high quartz content. As a dust control measure, vacuum drilling is employed on most of the roof bolters in US underground mines. However, fine rock partic- ulates from drilling could escape from the dust collection system and become airborne under some circumstances causing the roof bolter operators expose to quartz-rich respirable dust. A previous research shows that drilling can be controlled through properly selected penetration and rotational rates to reduce the specific energy of drilling. Less specific energy means less energy is wasted on generating noise, heat and over-breakage of rock. It implies that proper control of drilling has a great potential to generate significantly less fine rock dust during drilling. The drilling experiments have been conducted to study the effect of controlling drilling on reducing respirable dust. The preliminary results show that the size distributions of respirable dust were different when controlling drilling in different bite depths. This paper presents the findings from laboratory experimental studies.
文摘In underground mining, machine design is predominantly dictated by mine conditions and individual customer desires. In partnership with Foresight Energy, J. H. Fletcher & Company was tasked to design and manufacture a new roof bolting machine with six independent drilling apparatus on board capable of drilling and bolting the roof and ribs with material handling. The objective was to produce a machine capable of drilling and installing six bolts simultaneously with a limited number of operators. The goal of the mine is to decrease the time to bolt a cut to improve the safety level of the current roof bolting method, improve efficiency and to improve the bottom line cost of entry development. The customer wanted four drills at the front of the machine dedicated to installing roof bolts and then another two drills behind them dedicated to rib bolts. This dictated the requirement of latched controls, which would allow the operator to start drilling one hole and then latch the controls to be able to move on to the next.The result of the design is a machine with a single platform and six independent masts with drillheads:four masts strictly for drilling and installing roof bolts on the front of the platform and two masts on the back of the platform for rib bolts. The controls at each operator's station include a latch control for drilling. The six-head roof bolter allows fewer operators to drill and install roof and rib bolts, which in turn lowers the miners' roof exposure per cut. This design reduces the operator's exposure from the inherent pinch points and rotary hazards once he has engaged the latch drilling. Therefore, the machine will help to decrease the time to bolt a cut, improving productivity while enhancing the ability to operate the machine safely.