A profound understanding of the costs to perform condition assessment on buried drinking water pipeline infrastructure is required for enhanced asset management. Toward this end, an automated and uniform method of col...A profound understanding of the costs to perform condition assessment on buried drinking water pipeline infrastructure is required for enhanced asset management. Toward this end, an automated and uniform method of collecting cost data can provide water utilities a means for viewing, understanding, interpreting and visualizing complex geographically referenced cost information to reveal data relationships, patterns and trends. However, there has been no standard data model that allows automated data collection and interoperability across platforms. The primary objective of this research is to develop a standard cost data model for drinking water pipeline condition assessment projects and to conflate disparate datasets from differing utilities. The capabilities of this model will be further demonstrated through performing trend analyses. Field mapping files will be generated from the standard data model and demonstrated in an interactive web map created using Google Maps API (application programming interface) for JavaScript that allows the user to toggle project examples and to perform regional comparisons. The aggregation of standardized data and further use in mapping applications will help in providing timely access to condition assessment cost information and resources that will lead to enhanced asset management and resource allocation for drinking water utilities.展开更多
It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling met...It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling methods of digital terrain and solid model as well as the techniques of texture mapping and scene navigation are adopted.The simulation system is developed by C program language,which includes the functions of the interactive navigation of 3D scene,the visual inquiry of project digital model information,the storage and management of project information.A certain reservoir is taken as a case.The 3D visual analysis for the construction layout and engineering information are obtained.The proposed system is of great advantages in dealing with large amount of information and the method provides a theoretical basis and technical support for the construction layout of a reservoir project.展开更多
文摘A profound understanding of the costs to perform condition assessment on buried drinking water pipeline infrastructure is required for enhanced asset management. Toward this end, an automated and uniform method of collecting cost data can provide water utilities a means for viewing, understanding, interpreting and visualizing complex geographically referenced cost information to reveal data relationships, patterns and trends. However, there has been no standard data model that allows automated data collection and interoperability across platforms. The primary objective of this research is to develop a standard cost data model for drinking water pipeline condition assessment projects and to conflate disparate datasets from differing utilities. The capabilities of this model will be further demonstrated through performing trend analyses. Field mapping files will be generated from the standard data model and demonstrated in an interactive web map created using Google Maps API (application programming interface) for JavaScript that allows the user to toggle project examples and to perform regional comparisons. The aggregation of standardized data and further use in mapping applications will help in providing timely access to condition assessment cost information and resources that will lead to enhanced asset management and resource allocation for drinking water utilities.
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling methods of digital terrain and solid model as well as the techniques of texture mapping and scene navigation are adopted.The simulation system is developed by C program language,which includes the functions of the interactive navigation of 3D scene,the visual inquiry of project digital model information,the storage and management of project information.A certain reservoir is taken as a case.The 3D visual analysis for the construction layout and engineering information are obtained.The proposed system is of great advantages in dealing with large amount of information and the method provides a theoretical basis and technical support for the construction layout of a reservoir project.