Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eige...Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed.展开更多
We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quin...We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrdinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.展开更多
The Schrodinger equation with hyperbolic potential V ( x )=- Vosinh 2q ( x / d) / cosh 6 ( x / d) (q= 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain genera/symmetric and ...The Schrodinger equation with hyperbolic potential V ( x )=- Vosinh 2q ( x / d) / cosh 6 ( x / d) (q= 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain genera/symmetric and antisymmetric polynomial solutions of the SchrSdinger equation in a unified form via the Functional Bethe ansatz method. Furthermore, we discuss the characteristic of wavefunction of bound state with varying potential strengths. Particularly, the number of wavefunction's nodes decreases with the increase of potentiaJ strengths, and the particle tends to the bottom of the potential well correspondingly.展开更多
文摘Using the coordinate transformation method, we study the polynomial solutions of the Schr6dinger equation with position-dependent mass (PDM). The explicit expressions for the potentials, energy eigenvalues, and eigenfunctions of the systems are given. The issues related to normalization of the wavefunetions and Hermiticity of the Hamiltonian are also analyzed.
基金Supported by the Applied Nonlinear Science and Technology from the Most Important Among all the Top Priority Disciplines of Zhejiang Province
文摘We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrdinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11047025,11075126 and 11031005the Ministry of Education Doctoral Program Funds under Grant Nos.20126101110004,20116101110017SRF for ROCS
文摘The Schrodinger equation with hyperbolic potential V ( x )=- Vosinh 2q ( x / d) / cosh 6 ( x / d) (q= 0, 1, 2, 3) is studied by transforming it into the confluent Heun equation. We obtain genera/symmetric and antisymmetric polynomial solutions of the SchrSdinger equation in a unified form via the Functional Bethe ansatz method. Furthermore, we discuss the characteristic of wavefunction of bound state with varying potential strengths. Particularly, the number of wavefunction's nodes decreases with the increase of potentiaJ strengths, and the particle tends to the bottom of the potential well correspondingly.