With the improvement of electricity markets,the gradual aggravation of energy shortage and the environment pollution,it is urgent to formulate a new model to precisely satisfy the system demand for energy and reserve....With the improvement of electricity markets,the gradual aggravation of energy shortage and the environment pollution,it is urgent to formulate a new model to precisely satisfy the system demand for energy and reserve.Currently,power system opti-mization dispatching is always formulated as a discrete-time scheduling model.In this paper,we first demonstrate through an example that the upper and lower bounds of spinning reserve offered by a unit,given in the discrete-time model framework as constraints,is unreachable.This causes the problem that the reserve delivery obtained by the discrete-time scheduling model cannot be carried out precisely.From the detailed analysis of the ramp rate constraints,it is proved that the reachable upper and lower bounds of spinning reserve in every period can be expressed as functions of two variables,i.e.,generation level of unit at the start and end of this period.Thus,a new method is provided to calculate the upper and lower bounds of spinning reserve which are reachable in average.Furthermore,a new model based on this proposed method for joint scheduling of generation and reserve is presented,which considers the ability to realize the scheduled energy and reserve delivery.It converts the opti-mization based accurate scheduling for generation and reserve of power system from a continuous-time optimal control prob-lem to a nonlinear programming problem.Therefore,the proposed model can avoid the difficulties in solving a continu-ous-time optimal control problem.Based on the sequential quadratic programming method,numerical experiments for sched-uling electric power production systems are performed to evaluate the model and the results show that the new model is highly effective.展开更多
Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic ...Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.60921003,60736027,61174161,60974101)the Spe-cialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20090121110022)+3 种基金the Fundamental Research Funds for the Central Universities of Xiamen University(Grant Nos.2011121047,201112G018,CXB2011035)the Key Research Project of Fujian Province of China(Grant No.2009H0044)Xiamen University National 211 3rd Period Project of China)(Grant No.0630-E72000)the Natural Sci-ence Foundation of Fujian Province,China(Grant No.2011J05154)
文摘With the improvement of electricity markets,the gradual aggravation of energy shortage and the environment pollution,it is urgent to formulate a new model to precisely satisfy the system demand for energy and reserve.Currently,power system opti-mization dispatching is always formulated as a discrete-time scheduling model.In this paper,we first demonstrate through an example that the upper and lower bounds of spinning reserve offered by a unit,given in the discrete-time model framework as constraints,is unreachable.This causes the problem that the reserve delivery obtained by the discrete-time scheduling model cannot be carried out precisely.From the detailed analysis of the ramp rate constraints,it is proved that the reachable upper and lower bounds of spinning reserve in every period can be expressed as functions of two variables,i.e.,generation level of unit at the start and end of this period.Thus,a new method is provided to calculate the upper and lower bounds of spinning reserve which are reachable in average.Furthermore,a new model based on this proposed method for joint scheduling of generation and reserve is presented,which considers the ability to realize the scheduled energy and reserve delivery.It converts the opti-mization based accurate scheduling for generation and reserve of power system from a continuous-time optimal control prob-lem to a nonlinear programming problem.Therefore,the proposed model can avoid the difficulties in solving a continu-ous-time optimal control problem.Based on the sequential quadratic programming method,numerical experiments for sched-uling electric power production systems are performed to evaluate the model and the results show that the new model is highly effective.
基金supported by the National Natural Science Foundation of China (91531304, 31525018, 31370266, and 31788103)the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA08000000)the State Key Laboratory of Plant Cell and Chromosome Engineering (PCCE-KF-2017-03)
文摘Soybean was domesticated in China and has become one of the most important oilseed crops. Due to bottlenecks in their introduction and dissemination, soybeans from different geographic areas exhibit extensive genetic diversity. Asia is the largest soybean market; therefore, a high-quality soybean reference genome from this area is critical for soybean research and breeding.Here, we report the de novo assembly and sequence analysis of a Chinese soybean genome for "Zhonghuang 13" by a combination of SMRT, Hi-C and optical mapping data. The assembled genome size is 1.025 Gb with a contig N50 of 3.46 Mb and a scaffold N50 of 51.87 Mb. Comparisons between this genome and the previously reported reference genome(cv. Williams82) uncovered more than 250,000 structure variations. A total of 52,051 protein coding genes and 36,429 transposable elements were annotated for this genome, and a gene co-expression network including 39,967 genes was also established. This high quality Chinese soybean genome and its sequence analysis will provide valuable information for soybean improvement in the future.