The dynamic responses of suspension system of a vehicle travelling at varying speeds are generally nonstationary random processes,and the non-stationary random analysis has become an important and complex problem in v...The dynamic responses of suspension system of a vehicle travelling at varying speeds are generally nonstationary random processes,and the non-stationary random analysis has become an important and complex problem in vehicle ride dynamics in the past few years.This paper proposes a new concept,called dynamic frequency domain(DFD),based on the fact that the human body holds different sensitivities to vibrations at different frequencies,and applies this concept to the dynamic assessment on non-stationary vehicles.The study mainly includes two parts,the first is the input numerical calculation of the front and the rear wheels,and the second is the dynamical response analysis of suspension system subjected to non-stationary random excitations.Precise time integration method is used to obtain the vertical acceleration of suspension barycenter and the pitching angular acceleration,both root mean square(RMS)values of which are illustrated in different accelerating cases.The results show that RMS values of non-stationary random excitations are functions of time and increase as the speed increases at the same time.The DFD of vertical acceleration is finally analyzed using time-frequency analysis technique,and the conclusion is obviously that the DFD has a trend to the low frequency region,which would be significant reference for active suspension design under complex driving conditions.展开更多
Based on the principle of bacterial leaching and bacterial metallurgy,a novel technology for the detoxification of chromium-containing slag by Achromobacter sp.CH-1 and chromium recovery was proposed.Strain CH-1 cell ...Based on the principle of bacterial leaching and bacterial metallurgy,a novel technology for the detoxification of chromium-containing slag by Achromobacter sp.CH-1 and chromium recovery was proposed.Strain CH-1 cell morphology before and after Cr(Ⅵ) reduction was observed with a scanning electron microscope(SEM),and the reduction product is found to adhere to terminals of CH-1 cells.Energy-dispersive X-ray(EDX) and electron paramagnetic resonance(EPR) analyses reveal that the main component of the reduction product is Cr(Ⅲ).Furthermore,small and large-scale demonstration projects reveal that Achromobacter sp.can be used to detoxify chromium-containing slag and to selectively recover chromium by using this novel technique.Chromium recovery rate increases with decreasing particle sizes of chromium-containing slag and slagheap height.Chromium recovery rates in 10 t/batch and 20 t/batch of on-site demonstration projects for chromium-containing slag detoxification are more than 90%.展开更多
In the present work, the total magnetization in superconducting state is separated into critical state and paramagnetic components in terms of an H(x)-dependent magnetic flux density. Utilizing this model, we reprod...In the present work, the total magnetization in superconducting state is separated into critical state and paramagnetic components in terms of an H(x)-dependent magnetic flux density. Utilizing this model, we reproduce successfully M-H curves measured by Sandu et al. [Phys. Rev. B 74 (2006) 184511] and Sandu et al. [J. Supercond. Incorp. Novel Magn. 17 (2004) 701] for different forms of Jc.展开更多
We propose a quantum secure communication protocol by using three-particle GHZ states. In this protocol, we utilize the ideas of the rearranging orders and the sequence transmission. The sender of messages, Alice, fir...We propose a quantum secure communication protocol by using three-particle GHZ states. In this protocol, we utilize the ideas of the rearranging orders and the sequence transmission. The sender of messages, Alice, first disturbs the particle orders in an initial sequence, and then sends the sequence of the disturbed orders to the receiver of messages, Bob. Under Alice's introduction, Bob rearranges the sequence back to the initial sequence. By making a GHZ state measurement on each of the three particles in turn, Bob can attain Alice's secret messages. In addition, we still calculate the efficiency of our three-particle GHZ protocol and generalize it to the case using multi-particle GHZ state.展开更多
Recently,transplantation of allogeneic and autologous cells has been used for regenerative medicine.A critical issue is monitoring migration and homing of transplanted cells,as well as engraftment efficiency and funct...Recently,transplantation of allogeneic and autologous cells has been used for regenerative medicine.A critical issue is monitoring migration and homing of transplanted cells,as well as engraftment efficiency and functional capability in vivo.Monitoring of superparamagnetic iron oxide(SPIO) particles by magnetic resonance imaging(MRI) has been used in animal models and clinical settings to track labeled cells.A major limitation of MRI is that the signals do not show biological characteristics of transplanted cells in vivo.Bone marrow mesenchymal stem cells(MSCs) have been extensively investigated for their various therapeutic properties,and exhibit the potential to differentiate into cells of diverse lineages.In this study,cynomolgus monkey MSCs(cMSCs) were labeled with Molday ION Rhodamine-BTM(MIRB),a new SPIO agent,to investigate and characterize the biophysical and MRI properties of labeled cMSCs in vitro and in vivo.The results indicate that MIRB is biocompatible and useful for cMSCs labeling and cell tracking by multimodality imaging.Our method is helpful for detection of transplanted stem cells in vivo,which is required for understanding mechanisms of cell therapy.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51705205)。
文摘The dynamic responses of suspension system of a vehicle travelling at varying speeds are generally nonstationary random processes,and the non-stationary random analysis has become an important and complex problem in vehicle ride dynamics in the past few years.This paper proposes a new concept,called dynamic frequency domain(DFD),based on the fact that the human body holds different sensitivities to vibrations at different frequencies,and applies this concept to the dynamic assessment on non-stationary vehicles.The study mainly includes two parts,the first is the input numerical calculation of the front and the rear wheels,and the second is the dynamical response analysis of suspension system subjected to non-stationary random excitations.Precise time integration method is used to obtain the vertical acceleration of suspension barycenter and the pitching angular acceleration,both root mean square(RMS)values of which are illustrated in different accelerating cases.The results show that RMS values of non-stationary random excitations are functions of time and increase as the speed increases at the same time.The DFD of vertical acceleration is finally analyzed using time-frequency analysis technique,and the conclusion is obviously that the DFD has a trend to the low frequency region,which would be significant reference for active suspension design under complex driving conditions.
文摘Based on the principle of bacterial leaching and bacterial metallurgy,a novel technology for the detoxification of chromium-containing slag by Achromobacter sp.CH-1 and chromium recovery was proposed.Strain CH-1 cell morphology before and after Cr(Ⅵ) reduction was observed with a scanning electron microscope(SEM),and the reduction product is found to adhere to terminals of CH-1 cells.Energy-dispersive X-ray(EDX) and electron paramagnetic resonance(EPR) analyses reveal that the main component of the reduction product is Cr(Ⅲ).Furthermore,small and large-scale demonstration projects reveal that Achromobacter sp.can be used to detoxify chromium-containing slag and to selectively recover chromium by using this novel technique.Chromium recovery rate increases with decreasing particle sizes of chromium-containing slag and slagheap height.Chromium recovery rates in 10 t/batch and 20 t/batch of on-site demonstration projects for chromium-containing slag detoxification are more than 90%.
文摘In the present work, the total magnetization in superconducting state is separated into critical state and paramagnetic components in terms of an H(x)-dependent magnetic flux density. Utilizing this model, we reproduce successfully M-H curves measured by Sandu et al. [Phys. Rev. B 74 (2006) 184511] and Sandu et al. [J. Supercond. Incorp. Novel Magn. 17 (2004) 701] for different forms of Jc.
文摘We propose a quantum secure communication protocol by using three-particle GHZ states. In this protocol, we utilize the ideas of the rearranging orders and the sequence transmission. The sender of messages, Alice, first disturbs the particle orders in an initial sequence, and then sends the sequence of the disturbed orders to the receiver of messages, Bob. Under Alice's introduction, Bob rearranges the sequence back to the initial sequence. By making a GHZ state measurement on each of the three particles in turn, Bob can attain Alice's secret messages. In addition, we still calculate the efficiency of our three-particle GHZ protocol and generalize it to the case using multi-particle GHZ state.
基金supported by the National Basic Research Program of China (Grant No. 2007CB947704)Research Assistance Fund of Anhui Medical University (Grant No. XJ201008)
文摘Recently,transplantation of allogeneic and autologous cells has been used for regenerative medicine.A critical issue is monitoring migration and homing of transplanted cells,as well as engraftment efficiency and functional capability in vivo.Monitoring of superparamagnetic iron oxide(SPIO) particles by magnetic resonance imaging(MRI) has been used in animal models and clinical settings to track labeled cells.A major limitation of MRI is that the signals do not show biological characteristics of transplanted cells in vivo.Bone marrow mesenchymal stem cells(MSCs) have been extensively investigated for their various therapeutic properties,and exhibit the potential to differentiate into cells of diverse lineages.In this study,cynomolgus monkey MSCs(cMSCs) were labeled with Molday ION Rhodamine-BTM(MIRB),a new SPIO agent,to investigate and characterize the biophysical and MRI properties of labeled cMSCs in vitro and in vivo.The results indicate that MIRB is biocompatible and useful for cMSCs labeling and cell tracking by multimodality imaging.Our method is helpful for detection of transplanted stem cells in vivo,which is required for understanding mechanisms of cell therapy.