The present paper covers a novel technology for the concentration of trace amounts of target oligonucleotide from the solution. This technique is based on a super-paramagnetic DNA nano-enricher constructed with a sing...The present paper covers a novel technology for the concentration of trace amounts of target oligonucleotide from the solution. This technique is based on a super-paramagnetic DNA nano-enricher constructed with a single strand DNA probe immobilized onto the surface of the super-paramagnetic nanoparticles prepared by using the water-in-oil microemulsion technique, employing silica as the shell and iron oxide as the core of the super-paramagnetic nanoparticles. The silica coated magnetic nanoparticles are (40±4) nm in size. And the magnetic nanoparticle is super-paramagnetic. Biotin labeled ssDNA(Biotin-5-(A)10-GAT-TCA-CGA-GGC-CCT-AGT-CG-3) was immobilized on the surface of silica coated magnetic nanoparticles. The complementary ssDNA could be enriched effectively and the characteristics of the enriched ssDNA have not changed, which will provide a novel technique and measurement for gene transfection, mutation detection, gene diagnosis, gene therapy and so on.展开更多
目的制备超顺磁性硫酸链霉素-聚乳酸-聚乙二醇(PELA)微球(superparamagnetic chitosan streptomycin PELA micro-spheres,spCSPM),研究此微球的特性,并对其在振荡磁场作用下体外药物释放规律进行研究。方法用化学共沉淀法合成纳米超顺磁...目的制备超顺磁性硫酸链霉素-聚乳酸-聚乙二醇(PELA)微球(superparamagnetic chitosan streptomycin PELA micro-spheres,spCSPM),研究此微球的特性,并对其在振荡磁场作用下体外药物释放规律进行研究。方法用化学共沉淀法合成纳米超顺磁Fe304壳聚糖纳米粒(superparamagnetic chitosan Fe3O4 nanospheres,spFCN),再用双乳化(W/O/W)溶剂蒸发法制备spCSPM。将spCSPM混合入兔血中形成血凝块,在37℃模拟体液中进行体外药物溶出试验,用振荡磁场干预,用酶联免疫法(ELISA)检测硫酸链霉素的释放量。结果振荡磁场能够增加spCSPM血凝块中链霉素释放速率,与非磁性的壳聚糖聚乳酸-聚乙二醇(PELA)微球(chitosan streptomycin PELA microspheres,CSPM)相比,26d时使药物释放量提高3倍左右。结论spCSPM具有药物缓释功能,振荡磁场可重复性增加体系中药物的溶出,此体系药物缓释周期超过三周。展开更多
文摘The present paper covers a novel technology for the concentration of trace amounts of target oligonucleotide from the solution. This technique is based on a super-paramagnetic DNA nano-enricher constructed with a single strand DNA probe immobilized onto the surface of the super-paramagnetic nanoparticles prepared by using the water-in-oil microemulsion technique, employing silica as the shell and iron oxide as the core of the super-paramagnetic nanoparticles. The silica coated magnetic nanoparticles are (40±4) nm in size. And the magnetic nanoparticle is super-paramagnetic. Biotin labeled ssDNA(Biotin-5-(A)10-GAT-TCA-CGA-GGC-CCT-AGT-CG-3) was immobilized on the surface of silica coated magnetic nanoparticles. The complementary ssDNA could be enriched effectively and the characteristics of the enriched ssDNA have not changed, which will provide a novel technique and measurement for gene transfection, mutation detection, gene diagnosis, gene therapy and so on.