This paper presents the isothermal and isobaric vapor-liquid equilibria measured with an inclined ebulliometer for α-pinene + cis-pinane + 1-hexanol system at temperatures of 368.15K, 383.15 K and 408.15K, and at pre...This paper presents the isothermal and isobaric vapor-liquid equilibria measured with an inclined ebulliometer for α-pinene + cis-pinane + 1-hexanol system at temperatures of 368.15K, 383.15 K and 408.15K, and at pressures of 26.66 kPa and 53.33 kPa. The measured ternary results are analyzed using the UNIQUAC equation with the temperature-dependent binary parameters. Satisfactory agreements are obtained between the experimental results and the theoretical analysis.展开更多
C4 components are useful in industry and should be separated as individuals. A new process was proposed to separate them by extractive distillation, with the advantages of low equipment investment, energy consumption...C4 components are useful in industry and should be separated as individuals. A new process was proposed to separate them by extractive distillation, with the advantages of low equipment investment, energy consumption and liquid load in the columns. One principle to improve the extractive distillation process was put forward. Moreover, the analysis of operation state of the new process was done. There were eight operation states found for the whole process, but only one operation state was desirable. This work provides a way to effectively separate C4 mixtures and helps the reasonable utilization of C4 resource.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29976035) the Natural Science Foundation of Zhejiang Province (No. RC01051).
文摘This paper presents the isothermal and isobaric vapor-liquid equilibria measured with an inclined ebulliometer for α-pinene + cis-pinane + 1-hexanol system at temperatures of 368.15K, 383.15 K and 408.15K, and at pressures of 26.66 kPa and 53.33 kPa. The measured ternary results are analyzed using the UNIQUAC equation with the temperature-dependent binary parameters. Satisfactory agreements are obtained between the experimental results and the theoretical analysis.
文摘C4 components are useful in industry and should be separated as individuals. A new process was proposed to separate them by extractive distillation, with the advantages of low equipment investment, energy consumption and liquid load in the columns. One principle to improve the extractive distillation process was put forward. Moreover, the analysis of operation state of the new process was done. There were eight operation states found for the whole process, but only one operation state was desirable. This work provides a way to effectively separate C4 mixtures and helps the reasonable utilization of C4 resource.