In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the...In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the measured and predicted data, the precision of the predicted rolling force is gradually improved. This system has been used in plant for more than one year, and the result of the application shows that the system has steady and reliable performance, and high precision.展开更多
In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniq...In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.展开更多
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti...A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.展开更多
The program of the plate crown optimal prediction applied in the plate mill of Wuhan Iron and Steel(Group) Co. Ltd. is described. Optimal prediction is programmed in ALPHA 4000. The original profile, wear, expansion ...The program of the plate crown optimal prediction applied in the plate mill of Wuhan Iron and Steel(Group) Co. Ltd. is described. Optimal prediction is programmed in ALPHA 4000. The original profile, wear, expansion and deformation of work rolls are introduced into the program. The plate crown is controlled by the original profile of work rolls and the draft whose objective is the optimal plate crown. The run schedule is also optimized through the optimal prediction of the plate crown.展开更多
To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch c...To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch channel of a missile is designed by using this algorithm. The simulations verify that the designed controller can meet the demands of the task well.展开更多
This anticle gives a design method of the economical nonlinear controller. The controller is composed of an expert intelligent coordination controller, a fuzzy prediction controller, a fuzzy feedforward controller, a ...This anticle gives a design method of the economical nonlinear controller. The controller is composed of an expert intelligent coordination controller, a fuzzy prediction controller, a fuzzy feedforward controller, a nonlinear controller and so on. The consistence of a distributed control system based on this controller is also shown briefly.展开更多
Aim To solve the time delay problem in the optoelectronic tracking system, improving the tracking accuracy. Methods The discount least square algorithm was applied to forecast the tracking error caused by the 40?ms ...Aim To solve the time delay problem in the optoelectronic tracking system, improving the tracking accuracy. Methods The discount least square algorithm was applied to forecast the tracking error caused by the 40?ms delay, and the predicting algorithm was improved by the adaptive discount method.Results The tracking errors of the two methods were compared, and an optimal controller with the improved adaptive discount predicting algorithm was adopted for simulation. Conclusion The predicting algorithms, especially the adaptive discount predicting algorithm, can decrease the tracking error greatly, and the desired tracking prediction can be achieved both in the transient state and in the steady state.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhanc...A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
文摘In rolling process, the rolling force is an important parameter. The precision of the predicted rolling force will directly affect the precision of the finished product. By using adaptive control theory and fusing the measured and predicted data, the precision of the predicted rolling force is gradually improved. This system has been used in plant for more than one year, and the result of the application shows that the system has steady and reliable performance, and high precision.
基金The National Natural Science Foundation of China(No.51506029,51576041)the Natural Science Foundation of Jiangsu Province(No.BK20150631)China Postdoctoral Science Foundation
文摘In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.
基金Supported by the National Nature Science Foundation of China (90716028)~~
文摘A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.
文摘The program of the plate crown optimal prediction applied in the plate mill of Wuhan Iron and Steel(Group) Co. Ltd. is described. Optimal prediction is programmed in ALPHA 4000. The original profile, wear, expansion and deformation of work rolls are introduced into the program. The plate crown is controlled by the original profile of work rolls and the draft whose objective is the optimal plate crown. The run schedule is also optimized through the optimal prediction of the plate crown.
文摘To study the application of the generalized predictive adaptive control algorithm in missile control system, the algorithm is presented based on the recursive least square estimation, and a controller of the pitch channel of a missile is designed by using this algorithm. The simulations verify that the designed controller can meet the demands of the task well.
文摘This anticle gives a design method of the economical nonlinear controller. The controller is composed of an expert intelligent coordination controller, a fuzzy prediction controller, a fuzzy feedforward controller, a nonlinear controller and so on. The consistence of a distributed control system based on this controller is also shown briefly.
文摘Aim To solve the time delay problem in the optoelectronic tracking system, improving the tracking accuracy. Methods The discount least square algorithm was applied to forecast the tracking error caused by the 40?ms delay, and the predicting algorithm was improved by the adaptive discount method.Results The tracking errors of the two methods were compared, and an optimal controller with the improved adaptive discount predicting algorithm was adopted for simulation. Conclusion The predicting algorithms, especially the adaptive discount predicting algorithm, can decrease the tracking error greatly, and the desired tracking prediction can be achieved both in the transient state and in the steady state.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金Supported by the National Natrural Science Foundation of China(No.69635010).
文摘A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.