The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive st...The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.展开更多
To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties ...To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties of the porous Ti were explored via room temperature compressive tests. The pore sizes and shapes are uniform throughout the specimens with porosities ranging from 36% to 63%. The compression strength and the elastic modulus are in the range from 94.05 to 468.57 MPa and 2.662 to 18 GPa, respectively. It is worth noting that the relationship between the compressive strength and the porosities is completely linear relation beyond the effect of pore size distributions on the mechanical properties. The value of the constant C achieved from the Gibson-Ashby model suggests that the pore sizes affect the yield strength of the porous Ti and the values of density exponent (n) for porous Ti with two different pore sizes are higher than 2, which suggests that the deformation mode of the porous Ti with a porosity ranging from 36% to 63% is mainly buckling of the cell struts.展开更多
基金The National Basic Research Program of China (973Program)(No2000CB610703)
文摘The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.
基金Project (2012CB619100) supported by the National Basic Research Program of China
文摘To satisfy the mechanical and biological requirement of porous bone substitutes, porous Ti with two different pore sizes designed in advance was fabricated by the space-holder sintering process. Mechanical properties of the porous Ti were explored via room temperature compressive tests. The pore sizes and shapes are uniform throughout the specimens with porosities ranging from 36% to 63%. The compression strength and the elastic modulus are in the range from 94.05 to 468.57 MPa and 2.662 to 18 GPa, respectively. It is worth noting that the relationship between the compressive strength and the porosities is completely linear relation beyond the effect of pore size distributions on the mechanical properties. The value of the constant C achieved from the Gibson-Ashby model suggests that the pore sizes affect the yield strength of the porous Ti and the values of density exponent (n) for porous Ti with two different pore sizes are higher than 2, which suggests that the deformation mode of the porous Ti with a porosity ranging from 36% to 63% is mainly buckling of the cell struts.