The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extrac...The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extraction of molybdenum, tungsten and sulfur goes up with the increase of NaOH concentration, oxygen partial pressure and reaction time. The extraction of molybdenum and tungsten also rises up with temperature, but the leaching ratio of sulfur increases initially to a peak of 98% at 150℃ and then decreases with the increase of temperature. Under the optimal conditions, the extraction of molybdenum, tungsten and sulfur is more than 95.6%, 93.8% and 96.0%, respectively, and the main phases of residue are Bi2O3 and Fe2O3. Therefore, the method of pressure leaching in alkaline solution is provided as an effective separation of molybdenum, tungsten and sulfur from bismuth and a beneficial pretreatment for consequent process.展开更多
A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature cr...A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.展开更多
文摘The leaching results of bismuth sulfide concentrate containing molybdenum and tungsten in air-H2O2-NaOH system, pressure-O2-Na2CO3 system and pressure-O2-NaOH system were investigated. The results show that the extraction of molybdenum, tungsten and sulfur goes up with the increase of NaOH concentration, oxygen partial pressure and reaction time. The extraction of molybdenum and tungsten also rises up with temperature, but the leaching ratio of sulfur increases initially to a peak of 98% at 150℃ and then decreases with the increase of temperature. Under the optimal conditions, the extraction of molybdenum, tungsten and sulfur is more than 95.6%, 93.8% and 96.0%, respectively, and the main phases of residue are Bi2O3 and Fe2O3. Therefore, the method of pressure leaching in alkaline solution is provided as an effective separation of molybdenum, tungsten and sulfur from bismuth and a beneficial pretreatment for consequent process.
基金Project(50972121) supported by the National Natural Science Foundation of China
文摘A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.