It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during ver...It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during vertical and fast drilling. High WOB leads to well deviation out of control, and low WOB leads to low rate of penetration (ROP). So considering the rock physical properties, the anisotropy index function of polycrystalline diamond compact (PDC) bit was derived with the structure and cutting performance parameters of the bit, and the effect of natural hole deviation tendencies on the performance of DD-BHA resisting deviation was represented. The concept of elliptic deformation ratio was used to characterize the performance of DD-BHA resisting deviation. Eventually, a model calculating the critical WOB was established. By comparing the model predictions with the measured hole angle changes in the field, the results show that the model predictions are accurate with error less than 5.8%, which can meet the operational requirements in the projects. Furthermore, the model was adopted to justify and guide the operating conditions and parameters during drilling, which shows that the optimum WOB predicted by the model can not only control deviation but also improve ROP effectively. The model is independent on the formation characteristics of blocks, so it can be expanded widely to other oilfields.展开更多
LS-SVM (least squares support vector machines) are a class of kemel machines emphasizing on primal-dual aspects in a constrained optimization framework. LS-SVMs aim at extending methodologies typical of classical su...LS-SVM (least squares support vector machines) are a class of kemel machines emphasizing on primal-dual aspects in a constrained optimization framework. LS-SVMs aim at extending methodologies typical of classical support vector machines for problems beyond classification and regression. This paper describes a methodology that was developed for the prediction of the critical flashover voltage of polluted insulators by using a LS-SVM. The methodology uses as input variables characteristics of the insulator such as diameter, height, creepage distance, form factor and equivalent salt deposit density. The estimation offlashover performance of polluted insulators is based on field experience and laboratory tests are invaluable as they significantly reduce the time and labour involved in insulators design and selection. The majority of the variables to be predicted are dependent upon several independent variables. The results from this work are useful to predict the contamination severity, critical flashover voltage as a function of contamination severity, arc length, and especially to predict the flashover voltage. The validity of the approach was examined by testing several insulators with different geometries. Moreover, the performance of the proposed approach with other intelligence method based on ANN (artificial neural networks) is compared. It can be concluded that the LS-SVM approach has better generalization ability that assist the measurement and monitoring of contamination severity, flashover voltage and leakage current.展开更多
Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test re...Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.展开更多
基金Projects(50804040,51004082)supported by the National Natural Science Foundation of China
文摘It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during vertical and fast drilling. High WOB leads to well deviation out of control, and low WOB leads to low rate of penetration (ROP). So considering the rock physical properties, the anisotropy index function of polycrystalline diamond compact (PDC) bit was derived with the structure and cutting performance parameters of the bit, and the effect of natural hole deviation tendencies on the performance of DD-BHA resisting deviation was represented. The concept of elliptic deformation ratio was used to characterize the performance of DD-BHA resisting deviation. Eventually, a model calculating the critical WOB was established. By comparing the model predictions with the measured hole angle changes in the field, the results show that the model predictions are accurate with error less than 5.8%, which can meet the operational requirements in the projects. Furthermore, the model was adopted to justify and guide the operating conditions and parameters during drilling, which shows that the optimum WOB predicted by the model can not only control deviation but also improve ROP effectively. The model is independent on the formation characteristics of blocks, so it can be expanded widely to other oilfields.
文摘LS-SVM (least squares support vector machines) are a class of kemel machines emphasizing on primal-dual aspects in a constrained optimization framework. LS-SVMs aim at extending methodologies typical of classical support vector machines for problems beyond classification and regression. This paper describes a methodology that was developed for the prediction of the critical flashover voltage of polluted insulators by using a LS-SVM. The methodology uses as input variables characteristics of the insulator such as diameter, height, creepage distance, form factor and equivalent salt deposit density. The estimation offlashover performance of polluted insulators is based on field experience and laboratory tests are invaluable as they significantly reduce the time and labour involved in insulators design and selection. The majority of the variables to be predicted are dependent upon several independent variables. The results from this work are useful to predict the contamination severity, critical flashover voltage as a function of contamination severity, arc length, and especially to predict the flashover voltage. The validity of the approach was examined by testing several insulators with different geometries. Moreover, the performance of the proposed approach with other intelligence method based on ANN (artificial neural networks) is compared. It can be concluded that the LS-SVM approach has better generalization ability that assist the measurement and monitoring of contamination severity, flashover voltage and leakage current.
文摘Random behavior of concrete C45/55 XF2 used for prefabricated pre-stressed bridge beams is described on the basis of evaluating a vast set of measurements. A detailed statistical analysis is carried out on 133 test results of cylinders 150 ~ 300 mm in size. The tests have been running in laboratories of the Klokner Institute. A single worker took all specimens throughout the period, and the subsequent measurements of the static modulus of elasticity and the compressive strength of the concrete were performed. The measurements were made at the age of 28 days after specimens casting, and only one testing machine with the same capping method was used. Suitable theoretical models of division are determined on the basis of tests in good congruence, with the use of Z2 and the Bernstein criterion. A set of concrete compressive strength (carried out on 133 test results of cylinders 150 ~ 300 mm after test of static modulus of elasticity) shows relatively high skewness in this specific case. This cause that limited beta distribution is better than generally recommended theoretical distribution for strength the normal or lognormal. The modulus of elasticity is not significantly affected due to skewness because the design value is based on mean value.