Compared to the traditional lumped-parameter model, computational fluid dynamics (CFD) attracted more attentions due to facilitating more accurate reactor design and optimization methods when analyzing the heat tran...Compared to the traditional lumped-parameter model, computational fluid dynamics (CFD) attracted more attentions due to facilitating more accurate reactor design and optimization methods when analyzing the heat transfer in the industrial packed bed. Here, a model was developed based on the CFD theory, in which the heterogeneous fluid flow was resolved by considering the oscillatory behavior of voidage and the effective fluid viscosity. The energy transports in packed bed were calculated by the convection and diffusion incorporated with gaseous dispersion in fluid and the contacting thermal conductivity of packed particles in solids. The heat transfer coefficient between fluid and wall was evaluated by considering the turbulence due to the packed particles adjacent to the wall. Thus, the heat transfer in padded bed can be predicted without using any adjustable semi-empirical effective thermal conductivity coefficient. The experimental results from the literature were employed to validate this model.展开更多
By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean ...By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.展开更多
基金Supported by National Natural Science Foundation of China(21676266,21676269)the "Strategic Priority Research Program" of the Chinese Academy of Sciences(XDB17020100)the National Key Projects for Fundamental Research and Development of China(2016YFA0202801)
文摘Compared to the traditional lumped-parameter model, computational fluid dynamics (CFD) attracted more attentions due to facilitating more accurate reactor design and optimization methods when analyzing the heat transfer in the industrial packed bed. Here, a model was developed based on the CFD theory, in which the heterogeneous fluid flow was resolved by considering the oscillatory behavior of voidage and the effective fluid viscosity. The energy transports in packed bed were calculated by the convection and diffusion incorporated with gaseous dispersion in fluid and the contacting thermal conductivity of packed particles in solids. The heat transfer coefficient between fluid and wall was evaluated by considering the turbulence due to the packed particles adjacent to the wall. Thus, the heat transfer in padded bed can be predicted without using any adjustable semi-empirical effective thermal conductivity coefficient. The experimental results from the literature were employed to validate this model.
基金the National Natural Science Foundation of China (Nos. 50579006 and 50639010)
文摘By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.