为了满足催化裂化原料预处理的要求,中国石油化工股份有限公司抚顺石油化工研究院采用ARASS(Adjustment of Reaction Active Site Structure)技术调节活性相结构,开发了Mo-Ni-Co的FF-24加氢预处理催化剂。该催化剂的金属含量只有FF-14...为了满足催化裂化原料预处理的要求,中国石油化工股份有限公司抚顺石油化工研究院采用ARASS(Adjustment of Reaction Active Site Structure)技术调节活性相结构,开发了Mo-Ni-Co的FF-24加氢预处理催化剂。该催化剂的金属含量只有FF-14催化剂的71%,但相对脱硫活性却比FF-14催化剂提高43%。FF-24催化剂在中国石油化工股份有限公司金陵分公司2.6 Mt/a蜡油加氢处理装置的工业应用结果表明:FF-24催化剂处理硫质量分数为2.08%,氮质量分数为1 340μg/g的高硫蜡油,在空速高达1.69 h-1的条件下,平均反应温度只有375℃就可以使精制蜡油硫质量分数降至1 000μg/g,化学氢耗为0.90%,证明了FF-24催化剂良好的加氢脱硫活性和选择性,是炼油企业在较低氢耗下加工高硫蜡油的适宜催化剂。展开更多
The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with eth...The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.展开更多
The catalytic oxidation of toluene over Ag/SBA‐15synthesized under different pretreatment conditions,including O2at500°C(denoted O500),H2at500°C(H500),and O2at500°C followed by H2at300°C(O500‐H30...The catalytic oxidation of toluene over Ag/SBA‐15synthesized under different pretreatment conditions,including O2at500°C(denoted O500),H2at500°C(H500),and O2at500°C followed by H2at300°C(O500‐H300)was studied.The pretreated samples were investigated by N2physisorption,X‐ray diffraction,and ultraviolet‐visible diffuse reflectance.The pretreatment atmosphere greatly influences the status of the Ag and O species,which in turn significantly impacts the adsorption and catalytic removal of toluene.Ag2O and amorphous Ag particles,as well as a large amount of subsurface oxygen species,are formed on O500,and the subsurface oxygen enhances the interaction between Ag species and toluene,so O500shows good activity at higher temperature.However,its activity at lower temperature is not as high as expected,with a reduced presence of Ag2O and lower adsorption capacity for toluene.H2pretreatment at500°C is conducive to the formation of large Ag particles and yields the largest adsorption capacity for toluene,so H500exhibits the best activity at lower temperatures;however,because of poor interaction between Ag and toluene,its activity at higher temperature is modest.The O500‐H300sample exhibits excellent catalytic activity during the whole reaction process,which can be attributed to the small and highly dispersed Ag nanoparticles as well as the existence of subsurface oxygen.展开更多
ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on...ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal.展开更多
Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to...Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity.展开更多
Using SnxTi1-xO2 as carriers, CuO/Sn0.9Zi0.1O2 and CuO/Sn0.7Ti0.3O2 catalysts with different loading amounts of copper oxide (CuO) were prepared by an impregnation method. The catalytic properties of CuO/Sn0.9Ti0.1O...Using SnxTi1-xO2 as carriers, CuO/Sn0.9Zi0.1O2 and CuO/Sn0.7Ti0.3O2 catalysts with different loading amounts of copper oxide (CuO) were prepared by an impregnation method. The catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Zi0.3O2 were examined using a microreactor-gas chromatography (GC) NO+CO reaction system and the methods of BET (Brun- auer-Emmett-Teller), TG-DTA (themogravimetric and differential thermal analysis), X-ray diffraction (XRD) and H2-temperature programmed reduction (TPR). The results showed that NO conversions of Sn0.9Zi0.1O2 and Sn0.7Ti0.3O2 were 47.2% and 43.6% respectively, which increased to 95.3% and 90.9% at 6 wt% CuO loading. However, further increase in CuO loading caused a decrease in the catalytic activity. The nitrogen adsorption-desorption isotherm and pore-size distribution curve of Sn0.9Zi0.1O2 and Sn0.7Ti0.3O2 represented type IV of the BDDT (Brunauer, Deming, Deming and Teller) system and a typical mesoporous sample. There were two CuO diffraction peaks (2θ 35.5° and 38.7°), and the diffraction peak areas increased with increasing CuO loading. TPR analysis also detected three peaks (α, β and γ) from the CuO-loaded catalysts, suggesting that the α peak was the reduction of the highly dispersed copper oxide, the β peak was the reduction of the isolated copper oxide, and the y peak was the reduction of crystal phase copper oxide. In addition, a fourth peak (5) of the catalysts meant that the SnxTi1-xO2 mixed oxides could be reductive.展开更多
文摘为了满足催化裂化原料预处理的要求,中国石油化工股份有限公司抚顺石油化工研究院采用ARASS(Adjustment of Reaction Active Site Structure)技术调节活性相结构,开发了Mo-Ni-Co的FF-24加氢预处理催化剂。该催化剂的金属含量只有FF-14催化剂的71%,但相对脱硫活性却比FF-14催化剂提高43%。FF-24催化剂在中国石油化工股份有限公司金陵分公司2.6 Mt/a蜡油加氢处理装置的工业应用结果表明:FF-24催化剂处理硫质量分数为2.08%,氮质量分数为1 340μg/g的高硫蜡油,在空速高达1.69 h-1的条件下,平均反应温度只有375℃就可以使精制蜡油硫质量分数降至1 000μg/g,化学氢耗为0.90%,证明了FF-24催化剂良好的加氢脱硫活性和选择性,是炼油企业在较低氢耗下加工高硫蜡油的适宜催化剂。
基金the financial support from China Postdoctoral Science Foundation (2014M560224)
文摘The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.
基金supported by the National Natural Science Foundation of China(21377016,21577014)Program for Changjiang Scholars and Innovative Research Team in University(IRT_13R05)~~
文摘The catalytic oxidation of toluene over Ag/SBA‐15synthesized under different pretreatment conditions,including O2at500°C(denoted O500),H2at500°C(H500),and O2at500°C followed by H2at300°C(O500‐H300)was studied.The pretreated samples were investigated by N2physisorption,X‐ray diffraction,and ultraviolet‐visible diffuse reflectance.The pretreatment atmosphere greatly influences the status of the Ag and O species,which in turn significantly impacts the adsorption and catalytic removal of toluene.Ag2O and amorphous Ag particles,as well as a large amount of subsurface oxygen species,are formed on O500,and the subsurface oxygen enhances the interaction between Ag species and toluene,so O500shows good activity at higher temperature.However,its activity at lower temperature is not as high as expected,with a reduced presence of Ag2O and lower adsorption capacity for toluene.H2pretreatment at500°C is conducive to the formation of large Ag particles and yields the largest adsorption capacity for toluene,so H500exhibits the best activity at lower temperatures;however,because of poor interaction between Ag and toluene,its activity at higher temperature is modest.The O500‐H300sample exhibits excellent catalytic activity during the whole reaction process,which can be attributed to the small and highly dispersed Ag nanoparticles as well as the existence of subsurface oxygen.
基金Project (No. 29976036) supported by the National Natural Science Foundation of China
文摘ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5?8) Na2O: 44 EDA:Al2O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal.
基金funded by the Federal Ministry of Education and Research(Bundesministerium für Bildung und Forschung,BMBF,Verbundvorhaben Carbon2Chem■,FKZ:03EK3041)
文摘Co-Cu-based catalysts are widely applied in higher alcohol synthesis (HAS) from synthesis gas. Although the nature of the active sites is still not fully understood, the formation of Co2C under HAS conditions seems to play a major role. A CO pretreatment procedure was developed allowing a systematic investigation of the influence of cobalt carbidization on the structural properties and catalytic performance of the catalysts. By exposing the catalyst to a CO-containing atmosphere prior to HAS, Co enrichment of the catalyst surface occurred followed by carbide formation. This surface modification decreased the formation of hydrocarbons and enhanced the formation of C2+OH. The catalyst pretreated with CO at 20 bar achieved the highest selectivity to ethanol and the lowest hydrocarbon selectivity.
基金Project (No. Y504131) supported by the Natural Science Foundation of Zhejiang Province, China
文摘Using SnxTi1-xO2 as carriers, CuO/Sn0.9Zi0.1O2 and CuO/Sn0.7Ti0.3O2 catalysts with different loading amounts of copper oxide (CuO) were prepared by an impregnation method. The catalytic properties of CuO/Sn0.9Ti0.1O2 and CuO/Sn0.7Zi0.3O2 were examined using a microreactor-gas chromatography (GC) NO+CO reaction system and the methods of BET (Brun- auer-Emmett-Teller), TG-DTA (themogravimetric and differential thermal analysis), X-ray diffraction (XRD) and H2-temperature programmed reduction (TPR). The results showed that NO conversions of Sn0.9Zi0.1O2 and Sn0.7Ti0.3O2 were 47.2% and 43.6% respectively, which increased to 95.3% and 90.9% at 6 wt% CuO loading. However, further increase in CuO loading caused a decrease in the catalytic activity. The nitrogen adsorption-desorption isotherm and pore-size distribution curve of Sn0.9Zi0.1O2 and Sn0.7Ti0.3O2 represented type IV of the BDDT (Brunauer, Deming, Deming and Teller) system and a typical mesoporous sample. There were two CuO diffraction peaks (2θ 35.5° and 38.7°), and the diffraction peak areas increased with increasing CuO loading. TPR analysis also detected three peaks (α, β and γ) from the CuO-loaded catalysts, suggesting that the α peak was the reduction of the highly dispersed copper oxide, the β peak was the reduction of the isolated copper oxide, and the y peak was the reduction of crystal phase copper oxide. In addition, a fourth peak (5) of the catalysts meant that the SnxTi1-xO2 mixed oxides could be reductive.