A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy...A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy under different infiltration pressures. The threshold pressure and flow behavior of liquid metal infiltrating into the preforms were calculated and measured. The microstructure of obtained Ct4Mg composites was observed. The results indicate that the measured threshold pressure for infiltration was 0.048 MPa, which was larger than the calculated value. The infiltration rate increased with the increase of infiltration pressure, but the increase amplitude decreased gradually. The tiny pores in the composites could be eliminated by increasing the infiltration pressure. When the infiltration pressure rose to 0.6 MPa, high quality C1/Mg composite was obtained.展开更多
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ...The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.展开更多
Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up t...Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.展开更多
Improved Resin Transfer Molding (RTM) technology and equipment were established.Void content and morphology of the 3-D braided preform/phenolic composite were investigated using different RTM processes.The results sho...Improved Resin Transfer Molding (RTM) technology and equipment were established.Void content and morphology of the 3-D braided preform/phenolic composite were investigated using different RTM processes.The results showed that void content of the vacuum and compression co-assisted RTM process was the lowest.Void morphologies of the specimen cross-section were analyzed with metallographic microscope.In traditional RTM process,the crack of cross-section was in evidence.In vacuum assisted RTM process,the void shape was divided into three categories:irregular crack,triangle,rotundity and ellipse.The most voids distributed in resin rich areas and were observed as large void based on equivalent diameter.In compression assisted RTM,vacuum and compression co-assisted RTM process,the polygonal voids mostly existed inter tows.Void size was mainly intermediate and small based equivalent diameter separately.展开更多
Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consum...Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control(CMPC)strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.展开更多
In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-...In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-Integral-Differential(PID)control,a design method of the grey prediction repetitive PID(GRPID)control algorithm was investigated,according to the characteristics of the periodic motion control.The hybrid control algorithm can estimate unsure parameters and disturbance of system using grey prediction,and compensate control in terms of the prediction results,and this may improve control quality and robustness of repetitive control for controlling periodic motion.An example was carried out to verify the feasibility of the controller.The simulation results show that this algorithm has better performances than that of the conventional repetitive control system.It indicates the presented control method is more suitable for control system of periodic motion.展开更多
The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and prol...The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology.展开更多
The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation syst...The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation system. For 4-12-1 I N02.8A centrifugal ventilation fan, the characteristic operating function of its mixed ventilation system is calculated from ventilation quantity and total pressure in the actual working status. At cul-de-sac of the reference coalmine, the evolution of methane concentration is a compound Poisson process and equivalent to a Brownian motion for Gaussian distributed increments. Solution of stochastic differential equation driven by mixed ventilation system, with dilution equation for its closure, provides parameters of mine ventilation system for keeping methane concentration within the permissible limit at cul-de-sac of the reference coalmine. These results intend to shed some light on application of blowing-sucking mixed ventilation systems in underground workings, and establish stochastic trends to consider methane control in coalmines.展开更多
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(2013AA8011004B)supported by National High Technology Research and Development Program of ChinaProject(CX201011)supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A dynamic measuring apparatus was developed to investigate the infiltration process of liquid metal into the fibrous preform. 10% (volume fraction) chopped carbon fiber preforms were infiltrated with magnesium alloy under different infiltration pressures. The threshold pressure and flow behavior of liquid metal infiltrating into the preforms were calculated and measured. The microstructure of obtained Ct4Mg composites was observed. The results indicate that the measured threshold pressure for infiltration was 0.048 MPa, which was larger than the calculated value. The infiltration rate increased with the increase of infiltration pressure, but the increase amplitude decreased gradually. The tiny pores in the composites could be eliminated by increasing the infiltration pressure. When the infiltration pressure rose to 0.6 MPa, high quality C1/Mg composite was obtained.
基金The National Key Research and Development Program of China(No.2016YFC0701703)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J)the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
文摘The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
基金Project supported by the Science Fund for Distinguished Young Scholars of Heilongjiang Province, ChinaProject supported by the Program for Excellent Team in Harbin Institute of Technology
文摘Short carbon fiber preform reinforced geopolymer composites containing different contents of α-Al2O3 filler (Cr(a-Al2O3)/geopolymer composites) were fabricated, and the effects of heat treatment temperatures up to 1 200 ℃ on the thermal-mechanical properties were studied. The results show that the thermal shrinkage in the direction perpendicular to the lamination of the composites gradually increases with the increase of the heat treatment temperatures from room temperature (25 ℃ ) to 1000 ℃. However, the composites in the direction parallel to the lamination show an expansion behavior. Beyond 1 000℃, in the two directions the composites exhibit a larger degree of shrinkage due to the densification and crystallization. The mechanical properties of the composites show the minimum values in the temperature range from 600 to 800 ℃ as the hydration water of geopolymer matrix is lost. The addition of α-Al2O3 particle filler into the composites clearly increases the onset crystalline temperature of leucite (KAlSi2O6) from the amorphous geopolymer matrix. In addition, the addition of α-Al2O3 particles into the composites can not only help to keep volume stable at high temperatures but also effectively improve the mechanical properties of the composites subjected to thermal load to a certain extent. The main toughening mechanisms of the composites subjected to thermal load are attributed to fiber pulling-out.
基金Tianjin Natural Science Foundation of China(No.06YFJ MJC03100,08JCZDJC24500)
文摘Improved Resin Transfer Molding (RTM) technology and equipment were established.Void content and morphology of the 3-D braided preform/phenolic composite were investigated using different RTM processes.The results showed that void content of the vacuum and compression co-assisted RTM process was the lowest.Void morphologies of the specimen cross-section were analyzed with metallographic microscope.In traditional RTM process,the crack of cross-section was in evidence.In vacuum assisted RTM process,the void shape was divided into three categories:irregular crack,triangle,rotundity and ellipse.The most voids distributed in resin rich areas and were observed as large void based on equivalent diameter.In compression assisted RTM,vacuum and compression co-assisted RTM process,the polygonal voids mostly existed inter tows.Void size was mainly intermediate and small based equivalent diameter separately.
文摘Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control(CMPC)strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.
基金Science Fund of Shanghai Institute of Technology,China(No.YJ200609)
文摘In order to realize high accuracy control for periodic motion,a hybrid controller with grey prediction was presented in this paper.Incorporating the grey prediction,repetitive control,and the traditional Proportional-Integral-Differential(PID)control,a design method of the grey prediction repetitive PID(GRPID)control algorithm was investigated,according to the characteristics of the periodic motion control.The hybrid control algorithm can estimate unsure parameters and disturbance of system using grey prediction,and compensate control in terms of the prediction results,and this may improve control quality and robustness of repetitive control for controlling periodic motion.An example was carried out to verify the feasibility of the controller.The simulation results show that this algorithm has better performances than that of the conventional repetitive control system.It indicates the presented control method is more suitable for control system of periodic motion.
文摘The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology.
文摘The ventilation system plays an essential role in underground workings, and improvements in dilution effect to stochastic methane build-up at cul-de-sac of a coalmine require the installation of mixed ventilation system. For 4-12-1 I N02.8A centrifugal ventilation fan, the characteristic operating function of its mixed ventilation system is calculated from ventilation quantity and total pressure in the actual working status. At cul-de-sac of the reference coalmine, the evolution of methane concentration is a compound Poisson process and equivalent to a Brownian motion for Gaussian distributed increments. Solution of stochastic differential equation driven by mixed ventilation system, with dilution equation for its closure, provides parameters of mine ventilation system for keeping methane concentration within the permissible limit at cul-de-sac of the reference coalmine. These results intend to shed some light on application of blowing-sucking mixed ventilation systems in underground workings, and establish stochastic trends to consider methane control in coalmines.