To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of ...To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.展开更多
To systematically incorporate multiple influencing factors,the coupled-state frequency memory(Co-SFM)network is proposed.This model integrates Copula estimation with neural networks,fusing multilevel data information,...To systematically incorporate multiple influencing factors,the coupled-state frequency memory(Co-SFM)network is proposed.This model integrates Copula estimation with neural networks,fusing multilevel data information,which is then fed into downstream learning modules.Co-SFM employs an upstream fusion module to incorporate multilevel data,thereby constructing a macro-plate-micro data structure.This configuration helps identify and integrate characteristics from different data levels,facilitating a deeper understanding of the internal links within the financial system.In the downstream model,Co-SFM uses a state-frequency memory network to mine hidden frequency information within stock prices,and the multifrequency patterns of sequential data are modeled.Empirical results show that Co-SFM s prediction accuracy for stock price trends is significantly better than that of other models.This is especially evident in multistep medium and long-term trend predictions,where integrating multilevel data results in notably improved accuracy.展开更多
This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasing...This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasingly used for production objectives. The pre-stack seismic property studies include not only amplitude verse offset (AVO) but also the characteristics of other elastic property changes. In this paper, we analyze the elastic property parameters characteristics of gas- and wet-sands using data from four gas-sand core types. We found that some special elastic property parameters or combinations can be used to identify gas sands from water saturated sand. Thus, we can do reservoir interpretation and description using different elastic property data from the pre-stack seismic inversion processing. The pre- stack inversion method is based on the simplified Aki-Richard linear equation. The initial model can be generated from well log data and seismic and geologic interpreted horizons in the study area. The input seismic data is angle gathers generated from the common reflection gathers used in pre-stack time or depth migration. The inversion results are elastic property parameters or their combinations. We use a field data example to examine which elastic property parameters or combinations of parameters can most easily discriminate gas sands from background geology and which are most sensitive to pore-fluid content. Comparing the inversion results to well data, we found that it is useful to predict gas reservoirs using λ, λρ, λ/μ, and K/μ properties, which indicate the gas characteristics in the study reservoir.展开更多
In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics ...In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics modelling technique,the seismic azimuthal anisotropy characteristic is analyzed for distinguishing the fractures of meso-scale.Furthermore,by integrating geological core fracture description,image well-logging fracture interpretation,seismic attributes macro-scale fracture prediction and core slice micro-scale fracture characterization,an comprehensive multi-scale fracture prediction methodology and technique workflow are proposed by using geology,well-logging and seismic multi-attributes.Firstly,utilizing the geology core slice observation(Fractures description) and image well-logging data interpretation results,the main governing factors of fracture development are obtained,and then the control factors of the development of regional macro-scale fractures are carried out via modelling of the tectonic stress field.For the meso-scale fracture description,the poststack geometric attributes are used to describe the macro-scale fracture as well,the prestack attenuation seismic attribute is used to predict the meso-scale fracture.Finally,by combining lithological statistic inversion with superposed results of faults,the relationship of the meso-scale fractures,lithology and faults can be reasonably interpreted and the cause of meso-scale fractures can be verified.The micro-scale fracture description is mainly implemented by using the electron microscope scanning of cores.Therefore,the development of fractures in reservoirs is assessed by valuating three classes of fracture prediction results.An integrated fracture prediction application to a real field in Sichuan basin,where limestone reservoir fractures developed,is implemented.The application results in the study area indicates that the proposed multi-scales integrated fracture prediction method and the technique procedureare able to deal with the strong heterogeneity and multi-scales problems in fracture prediction.Moreover,the multi-scale fracture prediction technique integrated with geology,well-logging and seismic multi-information can help improve the reservoir characterization and sweet-spots prediction for the fractured hydrocarbon reservoirs.展开更多
The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods s...The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.展开更多
The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production ...The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.展开更多
Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. How...Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction fltering to separate the wave diffractions. First, we estimate the local slope of the seismic event using plane- wave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects.展开更多
Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, se...Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently.展开更多
A technology of one-stage roughing and one-stage scavenging vanadium pre-concentration with shaking table was investigated for improving vanadium grade and decreasing acid consumption minerals content based on the qua...A technology of one-stage roughing and one-stage scavenging vanadium pre-concentration with shaking table was investigated for improving vanadium grade and decreasing acid consumption minerals content based on the quantitative evaluation of minerals by scanning electronic microscopy (QEMSCAN). In order to visually illustrate how the vanadium-bearing minerals were separated from system, a loose-stratification model was established with Bagnold shear loose theory and Kelly stratification hypothesis. Through the model, it was inferred that fine fraction and coarse fraction of vanadium-bearing muscovite particles easily became the concentrate in roughing and scavenging stages, respectively. The type of the dominant effect on the loose-stratification was confirmed. In the roughing stage, gravity sedimentation played a leading role in the loose-stratification process. However, in the scavenging stage, shearing dispersion pressure caused by asymmetric motion of table deck took an important part in the loose-stratification process. Finally, the correction of the loose-stratification model was validated by the practical experiment.展开更多
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th...At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.展开更多
To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in whi...To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in which reasonable stiffness ratio of the upperchord, middle chord, and lower chord is derived. Then combined with an actual engineering model (1:8similar ratio), the static loading and pseudo-dynamic tests of two models for laminated vierendeeltrass used in transfer story structures are conducted, in which one model adopts reinforcedconcrete, and the other adopts prestressed concrete and shape steel concrete. Seismic behaviors areanalyzed, including inter-story displacement, base shear-displacement skeleton curves, andequivalent viscosity-damping curves. A program is programmed to carry out the elasto-plastic dynamicanalysis, and displacement time-history curves of the two models are derived. The test and analysisresults show that the laminated vierendeel trass with prestressed concrete and shape steel concretehas excellent seismic behaviors. It can solve the disadvantages of laminated vierendeel trussesused in transfer story structures. Finally, some design suggestions are put forward, which can bereferenced by similar engineering.展开更多
Hue-Saturation-Intensity (HSI) color model, a psychologically appealing color model, was employed to visualize uncertainty represented by relative prediction error based on the case of spatial prediction of pH of to...Hue-Saturation-Intensity (HSI) color model, a psychologically appealing color model, was employed to visualize uncertainty represented by relative prediction error based on the case of spatial prediction of pH of topsoil in the peri-urban Beijing. A two-dimensional legend was designed to accompany the visualization-vertical axis (hues) for visualizing the predicted values and horizontal axis (whiteness) for visualizing the prediction error. Moreover, different ways of visualizing uncertainty were briefly reviewed in this paper. This case study indicated that visualization of both predictions and prediction uncertainty offered a possibility to enhance visual exploration of the data uncertainty and to compare different prediction methods or predictions of totally different variables. The whitish region of the visualization map can be simply interpreted as unsatisfactory prediction results, where may need additional samples or more suitable prediction models for a better prediction results.展开更多
The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in...The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.展开更多
Carbonate karst reservoir is the emphases of Tarim's carbonate exploration. However, it is buried at a large depth, which results in Weak seismic reflection signal and low S/N ratio. In addition, the karst reservoir ...Carbonate karst reservoir is the emphases of Tarim's carbonate exploration. However, it is buried at a large depth, which results in Weak seismic reflection signal and low S/N ratio. In addition, the karst reservoir contains great heterogeneity, so reservoir prediction is very difficult. Through many years of research and exploration, we have established a suite of comprehensive evaluation technology for carbonate karst reservoir using geophysical characteristics and a geological concept model, including a technique for reconstructing the paleogeomorphology of buried hills based on a sequence framework, seismic description of the karst reservoir, and strain variant analysis for fracture estimation. The evaluation technology has been successfully applied in the Tabei and Tazhong areas, and commercial production of oil and gas has been achieved. We show the application of this technology in the Lunguxi area in North Tarim in this paper.展开更多
Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
文摘To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.
基金The National Natural Science Foundation of China(No.72173018).
文摘To systematically incorporate multiple influencing factors,the coupled-state frequency memory(Co-SFM)network is proposed.This model integrates Copula estimation with neural networks,fusing multilevel data information,which is then fed into downstream learning modules.Co-SFM employs an upstream fusion module to incorporate multilevel data,thereby constructing a macro-plate-micro data structure.This configuration helps identify and integrate characteristics from different data levels,facilitating a deeper understanding of the internal links within the financial system.In the downstream model,Co-SFM uses a state-frequency memory network to mine hidden frequency information within stock prices,and the multifrequency patterns of sequential data are modeled.Empirical results show that Co-SFM s prediction accuracy for stock price trends is significantly better than that of other models.This is especially evident in multistep medium and long-term trend predictions,where integrating multilevel data results in notably improved accuracy.
基金supported by the National Basic Priorities Program "973" Project (Grant No.2007CB209600)China Postdoctoral Science Foundation Funded Project
文摘This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasingly used for production objectives. The pre-stack seismic property studies include not only amplitude verse offset (AVO) but also the characteristics of other elastic property changes. In this paper, we analyze the elastic property parameters characteristics of gas- and wet-sands using data from four gas-sand core types. We found that some special elastic property parameters or combinations can be used to identify gas sands from water saturated sand. Thus, we can do reservoir interpretation and description using different elastic property data from the pre-stack seismic inversion processing. The pre- stack inversion method is based on the simplified Aki-Richard linear equation. The initial model can be generated from well log data and seismic and geologic interpreted horizons in the study area. The input seismic data is angle gathers generated from the common reflection gathers used in pre-stack time or depth migration. The inversion results are elastic property parameters or their combinations. We use a field data example to examine which elastic property parameters or combinations of parameters can most easily discriminate gas sands from background geology and which are most sensitive to pore-fluid content. Comparing the inversion results to well data, we found that it is useful to predict gas reservoirs using λ, λρ, λ/μ, and K/μ properties, which indicate the gas characteristics in the study reservoir.
基金supported by the national oil and gas major project(No.2011ZX05019-008)National Natural Science Foundation of China(No.41574108 and U1262208)presented at the Exploration Geophysics Symposium 2015 of the EAGE Local Chapter China
文摘In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics modelling technique,the seismic azimuthal anisotropy characteristic is analyzed for distinguishing the fractures of meso-scale.Furthermore,by integrating geological core fracture description,image well-logging fracture interpretation,seismic attributes macro-scale fracture prediction and core slice micro-scale fracture characterization,an comprehensive multi-scale fracture prediction methodology and technique workflow are proposed by using geology,well-logging and seismic multi-attributes.Firstly,utilizing the geology core slice observation(Fractures description) and image well-logging data interpretation results,the main governing factors of fracture development are obtained,and then the control factors of the development of regional macro-scale fractures are carried out via modelling of the tectonic stress field.For the meso-scale fracture description,the poststack geometric attributes are used to describe the macro-scale fracture as well,the prestack attenuation seismic attribute is used to predict the meso-scale fracture.Finally,by combining lithological statistic inversion with superposed results of faults,the relationship of the meso-scale fractures,lithology and faults can be reasonably interpreted and the cause of meso-scale fractures can be verified.The micro-scale fracture description is mainly implemented by using the electron microscope scanning of cores.Therefore,the development of fractures in reservoirs is assessed by valuating three classes of fracture prediction results.An integrated fracture prediction application to a real field in Sichuan basin,where limestone reservoir fractures developed,is implemented.The application results in the study area indicates that the proposed multi-scales integrated fracture prediction method and the technique procedureare able to deal with the strong heterogeneity and multi-scales problems in fracture prediction.Moreover,the multi-scale fracture prediction technique integrated with geology,well-logging and seismic multi-information can help improve the reservoir characterization and sweet-spots prediction for the fractured hydrocarbon reservoirs.
文摘The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.
文摘The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.
基金funded jointly by the National Natural Science Foundation of China(No.41104069)the National Key Basic Research Program of China(973 Program:2011CB202402)+1 种基金the Shandong University Science and Technology Planning Project(No.J17KA197)the College of Petroleum Engineering in Shengli College China University of Petroleum"Chunhui Project"(No.KY2015003)
文摘Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction fltering to separate the wave diffractions. First, we estimate the local slope of the seismic event using plane- wave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects.
文摘Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently.
基金Projects(2011BAB05B01,2011BA05B04)supported by the National Key Technology R&D Program during the 12th Five-year Plan Period,ChinaProject(201271031380)supported by Twilight Plane of Wuhan Youth Science and Technology,China
文摘A technology of one-stage roughing and one-stage scavenging vanadium pre-concentration with shaking table was investigated for improving vanadium grade and decreasing acid consumption minerals content based on the quantitative evaluation of minerals by scanning electronic microscopy (QEMSCAN). In order to visually illustrate how the vanadium-bearing minerals were separated from system, a loose-stratification model was established with Bagnold shear loose theory and Kelly stratification hypothesis. Through the model, it was inferred that fine fraction and coarse fraction of vanadium-bearing muscovite particles easily became the concentrate in roughing and scavenging stages, respectively. The type of the dominant effect on the loose-stratification was confirmed. In the roughing stage, gravity sedimentation played a leading role in the loose-stratification process. However, in the scavenging stage, shearing dispersion pressure caused by asymmetric motion of table deck took an important part in the loose-stratification process. Finally, the correction of the loose-stratification model was validated by the practical experiment.
基金supported by the "12th Five Year Plan" National Science and Technology Major Special Subject:Well Logging Data and Seismic Data Fusion Technology Research(No.2011ZX05023-005-006)
文摘At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
文摘To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in which reasonable stiffness ratio of the upperchord, middle chord, and lower chord is derived. Then combined with an actual engineering model (1:8similar ratio), the static loading and pseudo-dynamic tests of two models for laminated vierendeeltrass used in transfer story structures are conducted, in which one model adopts reinforcedconcrete, and the other adopts prestressed concrete and shape steel concrete. Seismic behaviors areanalyzed, including inter-story displacement, base shear-displacement skeleton curves, andequivalent viscosity-damping curves. A program is programmed to carry out the elasto-plastic dynamicanalysis, and displacement time-history curves of the two models are derived. The test and analysisresults show that the laminated vierendeel trass with prestressed concrete and shape steel concretehas excellent seismic behaviors. It can solve the disadvantages of laminated vierendeel trussesused in transfer story structures. Finally, some design suggestions are put forward, which can bereferenced by similar engineering.
基金Under the auspices of Knowledge Innovation Frontier Project of Institute of Soil Science,Chinese Academy of Sciences(No.ISSASIP0716 )the National Nature Science Foundation of China ( No.40701070,40571065)
文摘Hue-Saturation-Intensity (HSI) color model, a psychologically appealing color model, was employed to visualize uncertainty represented by relative prediction error based on the case of spatial prediction of pH of topsoil in the peri-urban Beijing. A two-dimensional legend was designed to accompany the visualization-vertical axis (hues) for visualizing the predicted values and horizontal axis (whiteness) for visualizing the prediction error. Moreover, different ways of visualizing uncertainty were briefly reviewed in this paper. This case study indicated that visualization of both predictions and prediction uncertainty offered a possibility to enhance visual exploration of the data uncertainty and to compare different prediction methods or predictions of totally different variables. The whitish region of the visualization map can be simply interpreted as unsatisfactory prediction results, where may need additional samples or more suitable prediction models for a better prediction results.
基金Supported by the National Natural Science Foundation of China(10772082)~~
文摘The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer.
基金This project is the applied fundamental research projects (04A10101) sponsored by the scientific and technology developmentdepartment of CNPC.
文摘Carbonate karst reservoir is the emphases of Tarim's carbonate exploration. However, it is buried at a large depth, which results in Weak seismic reflection signal and low S/N ratio. In addition, the karst reservoir contains great heterogeneity, so reservoir prediction is very difficult. Through many years of research and exploration, we have established a suite of comprehensive evaluation technology for carbonate karst reservoir using geophysical characteristics and a geological concept model, including a technique for reconstructing the paleogeomorphology of buried hills based on a sequence framework, seismic description of the karst reservoir, and strain variant analysis for fracture estimation. The evaluation technology has been successfully applied in the Tabei and Tazhong areas, and commercial production of oil and gas has been achieved. We show the application of this technology in the Lunguxi area in North Tarim in this paper.
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.