To accurately evaluate the degradation process of prestressed concrete continuous bridges exposed to aggressive environments in life-cycle,a finite element-based approach with respect to the lifetime performance asses...To accurately evaluate the degradation process of prestressed concrete continuous bridges exposed to aggressive environments in life-cycle,a finite element-based approach with respect to the lifetime performance assessment of concrete bridges was proposed.The existing assessment methods were firstly introduced and compared.Some essential mechanics problems involved in the degradation process,such as the deterioration of materials properties,the reduction of sectional areas and the variation of overall structural performance caused by the first two problems,were investigated and solved.A computer program named CBDAS(Concrete Bridge Durability Analysis System) was written to perform the above-metioned approach.Finally,the degradation process of a prestressed concrete continuous bridge under chloride penetration was discussed.The results show that the concrete normal stress for serviceability limit state exceeds the threshold value after 60 a,but the various performance indicators at ultimate limit state are consistently in the allowable level during service life.Therefore,in the case of prestressed concrete bridges,the serviceability limit state is more possible to have durability problems in life-cycle;however,the performance indicators at ultimate limit state can satisfy the requirements.展开更多
In this paper the analysis of tensile stress distribution in flexural continuous T- beam has been presented. The observed damages in carrying deck of RC bridge over the Wieprz River in Baranow indicate that over pilla...In this paper the analysis of tensile stress distribution in flexural continuous T- beam has been presented. The observed damages in carrying deck of RC bridge over the Wieprz River in Baranow indicate that over pillar zones are not protected enough. The results of numerical analysis have shown that tensile stress in T- section beam appears not only in a web but in flanges as well. Thus reinforcing bars should be distributed within the whole effective width. This fact is mentioned in building codes, for example, in Eurocode 2: "Design of concrete structures", both in part 1.1 "General rules and rules for building" and in part 2 "Reinforced and prestressed concrete bridges", but there are not detailed rules how to place the bars in flanges of T-section.展开更多
基金Project(2006.318.223.02-01) supported by the Ministry of Transportation and Communications through the Scientific and Technological Funds of ChinaProject(2007AA11Z104) supported by the High Technology Research and Development of ChinaProject(20090072110045) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘To accurately evaluate the degradation process of prestressed concrete continuous bridges exposed to aggressive environments in life-cycle,a finite element-based approach with respect to the lifetime performance assessment of concrete bridges was proposed.The existing assessment methods were firstly introduced and compared.Some essential mechanics problems involved in the degradation process,such as the deterioration of materials properties,the reduction of sectional areas and the variation of overall structural performance caused by the first two problems,were investigated and solved.A computer program named CBDAS(Concrete Bridge Durability Analysis System) was written to perform the above-metioned approach.Finally,the degradation process of a prestressed concrete continuous bridge under chloride penetration was discussed.The results show that the concrete normal stress for serviceability limit state exceeds the threshold value after 60 a,but the various performance indicators at ultimate limit state are consistently in the allowable level during service life.Therefore,in the case of prestressed concrete bridges,the serviceability limit state is more possible to have durability problems in life-cycle;however,the performance indicators at ultimate limit state can satisfy the requirements.
文摘In this paper the analysis of tensile stress distribution in flexural continuous T- beam has been presented. The observed damages in carrying deck of RC bridge over the Wieprz River in Baranow indicate that over pillar zones are not protected enough. The results of numerical analysis have shown that tensile stress in T- section beam appears not only in a web but in flanges as well. Thus reinforcing bars should be distributed within the whole effective width. This fact is mentioned in building codes, for example, in Eurocode 2: "Design of concrete structures", both in part 1.1 "General rules and rules for building" and in part 2 "Reinforced and prestressed concrete bridges", but there are not detailed rules how to place the bars in flanges of T-section.