In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f...In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.展开更多
Shot cokes are frequently formed in the delayed coking unit treating the super viscous oil at PetroChina's Liaohe Petrochemical Company. Considerable work has been carded out to avoid the formation of shot cokes. The...Shot cokes are frequently formed in the delayed coking unit treating the super viscous oil at PetroChina's Liaohe Petrochemical Company. Considerable work has been carded out to avoid the formation of shot cokes. The test results obtained have shown that the property of super viscous oil has played a key role in the formation of shot cokes. After adjusting and optimizing the process indices the operating regime of the delayed coking unit at a throughput of 118t/h of the super viscous oil is specified as follows: a reaction temperature of 498-502℃, a reaction pressure of 0.17-0.25 MPa, a recycle ratio of 0.5-0.6 and a fractionation tower bottom temperature of 355-365 ℃. In the meantime, the delayed coking process has adopted measures to enhance pre-fractionation of the feedstock to rationally remove light fractions and maintain a steady gas velocity in order to avoid the formation of shot cokes.展开更多
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.
文摘Shot cokes are frequently formed in the delayed coking unit treating the super viscous oil at PetroChina's Liaohe Petrochemical Company. Considerable work has been carded out to avoid the formation of shot cokes. The test results obtained have shown that the property of super viscous oil has played a key role in the formation of shot cokes. After adjusting and optimizing the process indices the operating regime of the delayed coking unit at a throughput of 118t/h of the super viscous oil is specified as follows: a reaction temperature of 498-502℃, a reaction pressure of 0.17-0.25 MPa, a recycle ratio of 0.5-0.6 and a fractionation tower bottom temperature of 355-365 ℃. In the meantime, the delayed coking process has adopted measures to enhance pre-fractionation of the feedstock to rationally remove light fractions and maintain a steady gas velocity in order to avoid the formation of shot cokes.