The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,the...The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..展开更多
Due to long-term positive P-balances many surface soils in areas with high livestock density in Germany are over-supplied with available P, creating a potential for vertical P losses by leaching. In extensive studies ...Due to long-term positive P-balances many surface soils in areas with high livestock density in Germany are over-supplied with available P, creating a potential for vertical P losses by leaching. In extensive studies to characterize the endangering of ground water to P pollution by chemical soil parameters it is shown that the available P content and the P concentration of the soil solution in the deeper soil layers, as indicators of the P-leaching potential, cannot be satisfactorily predicted from the available P content of the topsoils. The P equilibrium concentration in the soil solution directly above ground water table or the pipe drainage system highly depends on the relative saturation of the P-sorption capacity in this layer. A saturation index of <20% normally corresponds with P equilibrium concentrations of <0.2 mg P/L. Phytoremediation may reduce the P leaching potential of P-enriched soils only over a very long period.展开更多
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C).
文摘The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..
文摘Due to long-term positive P-balances many surface soils in areas with high livestock density in Germany are over-supplied with available P, creating a potential for vertical P losses by leaching. In extensive studies to characterize the endangering of ground water to P pollution by chemical soil parameters it is shown that the available P content and the P concentration of the soil solution in the deeper soil layers, as indicators of the P-leaching potential, cannot be satisfactorily predicted from the available P content of the topsoils. The P equilibrium concentration in the soil solution directly above ground water table or the pipe drainage system highly depends on the relative saturation of the P-sorption capacity in this layer. A saturation index of <20% normally corresponds with P equilibrium concentrations of <0.2 mg P/L. Phytoremediation may reduce the P leaching potential of P-enriched soils only over a very long period.