期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
无线ILC系统测控信号延时效应补偿方法
1
作者 罗伟栋 颜华超 +2 位作者 周浩林 张云 方勇 《系统仿真技术》 2012年第3期233-237,共5页
针对通过无线信道进行测控信号传输的远程迭代学习控制(ILC)系统,研究信号传输延时对控制系统性能的影响。分析了测控信号延时情况下ILC系统的收敛性问题,通过引入预控制向量,提出了ILC系统信道延时效应补偿的向量更新方法。数值仿真结... 针对通过无线信道进行测控信号传输的远程迭代学习控制(ILC)系统,研究信号传输延时对控制系统性能的影响。分析了测控信号延时情况下ILC系统的收敛性问题,通过引入预控制向量,提出了ILC系统信道延时效应补偿的向量更新方法。数值仿真结果表明了所提方法的有效性。 展开更多
关键词 无线迭代学习控制系统 信道传播延时 预控制向量
下载PDF
Particle Swarm Optimization based predictive control of Proton Exchange Membrane Fuel Cell (PEMFC) 被引量:6
2
作者 任远 曹广益 朱新坚 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第3期458-462,共5页
Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidificat... Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidification system and output performance of PEMFC stack are briefly analyzed. Predictive control of PEMFC based on Support Vector Regression Machine (SVRM) is presented and the SVRM is constructed. The processing plant is modelled on SVRM and the predictive control law is obtained by using Particle Swarm Optimization (PSO). The simulation and the results showed that the SVRM and the PSO re-ceding optimization applied to the PEMFC predictive control yielded good performance. 展开更多
关键词 Support Vector Regression Machine (SVRM) Proton Exchange Membrane Fuel Cell (PEMFC) Particle Swarm Optimization (PSO) Predictive control
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
3
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 Support vector machine Genetic algorithm Nonlinear model predictive control Neural network Modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部